Cargando…
Machine-learning scoring functions trained on complexes dissimilar to the test set already outperform classical counterparts on a blind benchmark
The superior performance of machine-learning scoring functions for docking has caused a series of debates on whether it is due to learning knowledge from training data that are similar in some sense to the test data. With a systematically revised methodology and a blind benchmark realistically mimic...
Autores principales: | Li, Hongjian, Lu, Gang, Sze, Kam-Heung, Su, Xianwei, Chan, Wai-Yee, Leung, Kwong-Sak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575004/ https://www.ncbi.nlm.nih.gov/pubmed/34169324 http://dx.doi.org/10.1093/bib/bbab225 |
Ejemplares similares
-
Toward a gold standard for benchmarking gene set enrichment analysis
por: Geistlinger, Ludwig, et al.
Publicado: (2020) -
Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data
por: Sidorczuk, Katarzyna, et al.
Publicado: (2022) -
Systematic benchmarking of statistical methods to assess differential expression of circular RNAs
por: Buratin, Alessia, et al.
Publicado: (2023) -
Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
por: Cheng, Andrew, et al.
Publicado: (2022) -
IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline
por: Knight, Connor H, et al.
Publicado: (2023)