Cargando…
DISMIR: Deep learning-based noninvasive cancer detection by integrating DNA sequence and methylation information of individual cell-free DNA reads
Detecting cancer signals in cell-free DNA (cfDNA) high-throughput sequencing data is emerging as a novel noninvasive cancer detection method. Due to the high cost of sequencing, it is crucial to make robust and precise predictions with low-depth cfDNA sequencing data. Here we propose a novel approac...
Autores principales: | Li, Jiaqi, Wei, Lei, Zhang, Xianglin, Zhang, Wei, Wang, Haochen, Zhong, Bixi, Xie, Zhen, Lv, Hairong, Wang, Xiaowo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575022/ https://www.ncbi.nlm.nih.gov/pubmed/34245239 http://dx.doi.org/10.1093/bib/bbab250 |
Ejemplares similares
-
scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
por: Zhu, Hao, et al.
Publicado: (2023) -
NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures
por: Martínez-Enguita, David, et al.
Publicado: (2023) -
A universal model of RNA.DNA:DNA triplex formation accurately predicts genome-wide RNA–DNA interactions
por: Warwick, Timothy, et al.
Publicado: (2022) -
MSIsensor-ct: microsatellite instability detection using cfDNA sequencing data
por: Han, Xinyin, et al.
Publicado: (2021) -
A new approach to decode DNA methylome and genomic variants simultaneously from double strand bisulfite sequencing
por: Liang, Jialong, et al.
Publicado: (2021)