Cargando…
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
The lack of explainability is one of the most prominent disadvantages of deep learning applications in omics. This ‘black box’ problem can undermine the credibility and limit the practical implementation of biomedical deep learning models. Here we present XOmiVAE, a variational autoencoder (VAE)-bas...
Autores principales: | Withnell, Eloise, Zhang, Xiaoyu, Sun, Kai, Guo, Yike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575033/ https://www.ncbi.nlm.nih.gov/pubmed/34402865 http://dx.doi.org/10.1093/bib/bbab315 |
Ejemplares similares
-
Computationally scalable regression modeling for ultrahigh-dimensional omics data with ParProx
por: Ko, Seyoon, et al.
Publicado: (2021) -
UNMF: a unified nonnegative matrix factorization for multi-dimensional omics data
por: Abe, Ko, et al.
Publicado: (2023) -
Ensemble modeling with machine learning and deep learning to provide interpretable generalized rules for classifying CNS drugs with high prediction power
por: Yu, Tzu-Hui, et al.
Publicado: (2021) -
A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data
por: Wang, Xiaqiong, et al.
Publicado: (2022) -
Filter and Wrapper Stacking Ensemble (FWSE): a robust approach for reliable biomarker discovery in high-dimensional omics data
por: Budhraja, Sugam, et al.
Publicado: (2023)