Cargando…
Computationally scalable regression modeling for ultrahigh-dimensional omics data with ParProx
Statistical analysis of ultrahigh-dimensional omics scale data has long depended on univariate hypothesis testing. With growing data features and samples, the obvious next step is to establish multivariable association analysis as a routine method to describe genotype–phenotype association. Here we...
Autores principales: | Ko, Seyoon, Li, Ginny X, Choi, Hyungwon, Won, Joong-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575036/ https://www.ncbi.nlm.nih.gov/pubmed/34254998 http://dx.doi.org/10.1093/bib/bbab256 |
Ejemplares similares
-
UNMF: a unified nonnegative matrix factorization for multi-dimensional omics data
por: Abe, Ko, et al.
Publicado: (2023) -
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
por: Withnell, Eloise, et al.
Publicado: (2021) -
A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data
por: Wang, Xiaqiong, et al.
Publicado: (2022) -
Filter and Wrapper Stacking Ensemble (FWSE): a robust approach for reliable biomarker discovery in high-dimensional omics data
por: Budhraja, Sugam, et al.
Publicado: (2023) -
Multi-omics regulatory network inference in the presence of missing data
por: Henao, Juan D, et al.
Publicado: (2023)