Cargando…
A systematic comparison of data- and knowledge-driven approaches to disease subtype discovery
Typical clustering analysis for large-scale genomics data combines two unsupervised learning techniques: dimensionality reduction and clustering (DR-CL) methods. It has been demonstrated that transforming gene expression to pathway-level information can improve the robustness and interpretability of...
Autores principales: | Rintala, Teemu J, Federico, Antonio, Latonen, Leena, Greco, Dario, Fortino, Vittorio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575038/ https://www.ncbi.nlm.nih.gov/pubmed/34396389 http://dx.doi.org/10.1093/bib/bbab314 |
Ejemplares similares
-
Ensembles of knowledge graph embedding models improve predictions for drug discovery
por: Rivas-Barragan, Daniel, et al.
Publicado: (2022) -
Filter and Wrapper Stacking Ensemble (FWSE): a robust approach for reliable biomarker discovery in high-dimensional omics data
por: Budhraja, Sugam, et al.
Publicado: (2023) -
Sample-specific perturbation of gene interactions identifies breast cancer subtypes
por: Chen, Yuanyuan, et al.
Publicado: (2020) -
A Bayesian model for identifying cancer subtypes from paired methylation profiles
por: Fan, Yetian, et al.
Publicado: (2022) -
Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes
por: Lu, Yuxing, et al.
Publicado: (2023)