Cargando…
DeepFeature: feature selection in nonimage data using convolutional neural network
Artificial intelligence methods offer exciting new capabilities for the discovery of biological mechanisms from raw data because they are able to detect vastly more complex patterns of association that cannot be captured by classical statistical tests. Among these methods, deep neural networks are c...
Autores principales: | Sharma, Alok, Lysenko, Artem, Boroevich, Keith A, Vans, Edwin, Tsunoda, Tatsuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575039/ https://www.ncbi.nlm.nih.gov/pubmed/34368836 http://dx.doi.org/10.1093/bib/bbab297 |
Ejemplares similares
-
scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
por: Jia, Shangru, et al.
Publicado: (2023) -
DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture
por: Sharma, Alok, et al.
Publicado: (2019) -
FLAN: feature-wise latent additive neural models for biological applications
por: Nguyen, An-Phi, et al.
Publicado: (2023) -
Locating transcription factor binding sites by fully convolutional neural network
por: Zhang, Qinhu, et al.
Publicado: (2021) -
RefRGim: an intelligent reference panel reconstruction method for genotype imputation with convolutional neural networks
por: Shi, Shuo, et al.
Publicado: (2021)