Cargando…
Interpretable Diagnosis for Whole-Slide Melanoma Histology Images Using Convolutional Neural Network
At present, deep learning-based medical image diagnosis had achieved high performance in several diseases. However, the black-box nature of the convolutional neural network (CNN) limits their role in diagnosis. In this study, a novel interpretable diagnosis pipeline using the CNN model was proposed....
Autores principales: | Xie, Peizhen, Zuo, Ke, Liu, Jie, Chen, Mingliang, Zhao, Shuang, Kang, Wenjie, Li, Fangfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575613/ https://www.ncbi.nlm.nih.gov/pubmed/34760142 http://dx.doi.org/10.1155/2021/8396438 |
Ejemplares similares
-
Automated Diagnosis and Localization of Melanoma from Skin Histopathology Slides Using Deep Learning: A Multicenter Study
por: Li, Tao, et al.
Publicado: (2021) -
Head and Neck Cancer Detection in Digitized Whole-Slide Histology Using Convolutional Neural Networks
por: Halicek, Martin, et al.
Publicado: (2019) -
Weakly supervised learning and interpretability for endometrial whole slide image diagnosis
por: Mohammadi, Mahnaz, et al.
Publicado: (2022) -
Classification of Melanocytic Lesions in Selected and Whole-Slide Images via Convolutional Neural Networks
por: Hart, Steven N., et al.
Publicado: (2019) -
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
por: Bándi, Péter, et al.
Publicado: (2019)