Cargando…

Utilizing Entity-Based Gated Convolution and Multilevel Sentence Attention to Improve Distantly Supervised Relation Extraction

Distant supervision is an effective method to automatically collect large-scale datasets for relation extraction (RE). Automatically constructed datasets usually comprise two types of noise: the intrasentence noise and the wrongly labeled noisy sentence. To address issues caused by the above two typ...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Qian, Zhang, Guixuan, Zhang, Shuwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575651/
https://www.ncbi.nlm.nih.gov/pubmed/34759966
http://dx.doi.org/10.1155/2021/6110885
Descripción
Sumario:Distant supervision is an effective method to automatically collect large-scale datasets for relation extraction (RE). Automatically constructed datasets usually comprise two types of noise: the intrasentence noise and the wrongly labeled noisy sentence. To address issues caused by the above two types of noise and improve distantly supervised relation extraction, this paper proposes a novel distantly supervised relation extraction model, which consists of an entity-based gated convolution sentence encoder and a multilevel sentence selective attention (Matt) module. Specifically, we first apply an entity-based gated convolution operation to force the sentence encoder to extract entity-pair-related features and filter out useless intrasentence noise information. Furthermore, the multilevel attention schema fuses the bag information to obtain a fine-grained bag-specific query vector, which can better identify valid sentences and reduce the influence of wrongly labeled sentences. Experimental results on a large-scale benchmark dataset show that our model can effectively reduce the influence of the above two types of noise and achieves state-of-the-art performance in relation extraction.