Cargando…
Utilizing Entity-Based Gated Convolution and Multilevel Sentence Attention to Improve Distantly Supervised Relation Extraction
Distant supervision is an effective method to automatically collect large-scale datasets for relation extraction (RE). Automatically constructed datasets usually comprise two types of noise: the intrasentence noise and the wrongly labeled noisy sentence. To address issues caused by the above two typ...
Autores principales: | Yi, Qian, Zhang, Guixuan, Zhang, Shuwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575651/ https://www.ncbi.nlm.nih.gov/pubmed/34759966 http://dx.doi.org/10.1155/2021/6110885 |
Ejemplares similares
-
Movie Scene Event Extraction with Graph Attention Network Based on Argument Correlation Information
por: Yi, Qian, et al.
Publicado: (2023) -
Chemical-induced disease relation extraction via attention-based distant supervision
por: Gu, Jinghang, et al.
Publicado: (2019) -
Extraction of Traditional Chinese Medicine Entity: Design of a Novel Span-Level Named Entity Recognition Method With Distant Supervision
por: Jia, Qi, et al.
Publicado: (2021) -
Distant Supervision for Extractive Question Summarization
por: Ishigaki, Tatsuya, et al.
Publicado: (2020) -
A hybrid attention and dilated convolution framework for entity and relation extraction and mining
por: Shan, Yuxiang, et al.
Publicado: (2023)