Cargando…
Machine learning random forest for predicting oncosomatic variant NGS analysis
Since 2017, we have used IonTorrent NGS platform in our hospital to diagnose and treat cancer. Analyzing variants at each run requires considerable time, and we are still struggling with some variants that appear correct on the metrics at first, but are found to be negative upon further investigatio...
Autores principales: | Pellegrino, Eric, Jacques, Coralie, Beaufils, Nathalie, Nanni, Isabelle, Carlioz, Antoine, Metellus, Philippe, Ouafik, L’Houcine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575902/ https://www.ncbi.nlm.nih.gov/pubmed/34750410 http://dx.doi.org/10.1038/s41598-021-01253-y |
Ejemplares similares
-
Extreme Gradient Boosting Tuned with Metaheuristic Algorithms for Predicting Myeloid NGS Onco-Somatic Variant Pathogenicity
por: Pellegrino, Eric, et al.
Publicado: (2023) -
Comparison between Immunocytochemistry, FISH and NGS for ALK and ROS1 Rearrangement Detection in Cytological Samples
por: Frankel, Diane, et al.
Publicado: (2022) -
Comparative genomic analysis of primary tumors and paired brain metastases in lung cancer patients by whole exome sequencing: a pilot study
por: Tomasini, Pascale, et al.
Publicado: (2020) -
EGFR and KRAS Mutations Predict the Incidence and Outcome of Brain Metastases in Non-Small Cell Lung Cancer
por: Tomasini, Pascale, et al.
Publicado: (2016) -
Recurrence of glioblastoma after radio-chemotherapy is associated with an angiogenic switch to the CXCL12-CXCR4 pathway
por: Tabouret, Emeline, et al.
Publicado: (2015)