Cargando…
Machine learning and network medicine approaches for drug repositioning for COVID-19
We present two machine learning approaches for drug repurposing. While we have developed them for COVID-19, they are disease-agnostic. The two methodologies are complementary, targeting SARS-CoV-2 and host factors, respectively. Our first approach consists of a matrix factorization algorithm to rank...
Autores principales: | Santos, Suzana de Siqueira, Torres, Mateo, Galeano, Diego, Sánchez, María del Mar, Cernuzzi, Luca, Paccanaro, Alberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576113/ https://www.ncbi.nlm.nih.gov/pubmed/34778851 http://dx.doi.org/10.1016/j.patter.2021.100396 |
Ejemplares similares
-
Machine learning prediction of side effects for drugs in clinical trials
por: Galeano, Diego, et al.
Publicado: (2022) -
Predicting the frequencies of drug side effects
por: Galeano, Diego, et al.
Publicado: (2020) -
Drug repositioning for personalized medicine
por: Li, Yvonne Y, et al.
Publicado: (2012) -
Drug repositioning: a machine-learning approach through data integration
por: Napolitano, Francesco, et al.
Publicado: (2013) -
Drug repositioning of herbal compounds via a machine-learning approach
por: Kim, Eunyoung, et al.
Publicado: (2019)