Cargando…
A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites
Knowledge about protein-protein interactions is beneficial in understanding cellular mechanisms. Protein-protein interactions are usually determined according to their protein-protein interaction sites. Due to the limitations of current techniques, it is still a challenging task to detect protein-pr...
Autores principales: | Wang, Pan, Zhang, Guiyang, Yu, Zu-Guo, Huang, Guohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576272/ https://www.ncbi.nlm.nih.gov/pubmed/34764983 http://dx.doi.org/10.3389/fgene.2021.752732 |
Ejemplares similares
-
LSTMCNNsucc: A Bidirectional LSTM and CNN-Based Deep Learning Method for Predicting Lysine Succinylation Sites
por: Huang, Guohua, et al.
Publicado: (2021) -
A Novel Protein Subcellular Localization Method With CNN-XGBoost Model for Alzheimer's Disease
por: Pang, Long, et al.
Publicado: (2019) -
Developing Computational Model to Predict Protein-Protein Interaction Sites Based on the XGBoost Algorithm
por: Deng, Aijun, et al.
Publicado: (2020) -
m5Cpred-XS: A New Method for Predicting RNA m5C Sites Based on XGBoost and SHAP
por: Liu, Yinbo, et al.
Publicado: (2022) -
Gene Expression Value Prediction Based on XGBoost Algorithm
por: Li, Wei, et al.
Publicado: (2019)