Cargando…

The Role of GIP Receptor in the CNS for the Pathogenesis of Obesity

Glucose-dependent insulinotropic polypeptide (GIP) (also known as gastric inhibitory polypeptide) is a hormone produced in the upper gut and secreted to the circulation in response to the ingestion of foods, especially fatty foods. Growing evidence supports the physiological and pharmacological rele...

Descripción completa

Detalles Bibliográficos
Autor principal: Fukuda, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576424/
https://www.ncbi.nlm.nih.gov/pubmed/34176784
http://dx.doi.org/10.2337/dbi21-0001
Descripción
Sumario:Glucose-dependent insulinotropic polypeptide (GIP) (also known as gastric inhibitory polypeptide) is a hormone produced in the upper gut and secreted to the circulation in response to the ingestion of foods, especially fatty foods. Growing evidence supports the physiological and pharmacological relevance of GIP in obesity. In an obesity setting, inhibition of endogenous GIP or its receptor leads to decreased energy intake, increased energy expenditure, or both, eventually causing weight loss. Further, supraphysiological dosing of exogenous long-lasting GIP agonists alters energy balance and has a marked antiobesity effect. This remarkable yet paradoxical antiobesity effect is suggested to occur primarily via the brain. The brain is capable of regulating both energy intake and expenditure and plays a critical role in human obesity. In addition, the GIP receptor is widely distributed throughout the brain, including areas responsible for energy homeostasis. Recent studies have uncovered previously underappreciated roles of the GIP receptor in the brain in the context of obesity. This article highlights how the GIP receptor expressed by the brain impacts obesity-related pathogenesis.