Cargando…
Developing an Embedding, Koopman and Autoencoder Technologies-Based Multi-Omics Time Series Predictive Model (EKATP) for Systems Biology research
It is very important for systems biologists to predict the state of the multi-omics time series for disease occurrence and health detection. However, it is difficult to make the prediction due to the high-dimensional, nonlinear and noisy characteristics of the multi-omics time series data. For this...
Autores principales: | Liu, Suran, You, Yujie, Tong, Zhaoqi, Zhang, Le |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576451/ https://www.ncbi.nlm.nih.gov/pubmed/34764986 http://dx.doi.org/10.3389/fgene.2021.761629 |
Ejemplares similares
-
koopmans: An Open-Source Package
for Accurately and Efficiently Predicting Spectral Properties with
Koopmans Functionals
por: Linscott, Edward B., et al.
Publicado: (2023) -
AIME: Autoencoder-based integrative multi-omics data embedding that allows for confounder adjustments
por: Yu, Tianwei
Publicado: (2022) -
Editorial: Omics Technologies Toward Systems Biology
por: Maghuly, Fatemeh, et al.
Publicado: (2021) -
Koopman wavefunctions and classical–quantum correlation dynamics
por: Bondar, Denys I., et al.
Publicado: (2019) -
Generalizing Koopman Theory to Allow for Inputs and Control
por: Proctory, Joshua L., et al.
Publicado: (2018)