Cargando…
The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia
Non-invasive electrocardiographic imaging (ECGI) is a novel clinical tool for mapping ventricular arrhythmia. Using multiple body surface electrodes to collect unipolar electrograms and conventional medical imaging of the heart, an epicardial shell can be created to display calculated electrograms....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radcliffe Cardiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576495/ https://www.ncbi.nlm.nih.gov/pubmed/34777827 http://dx.doi.org/10.15420/aer.2021.27 |
_version_ | 1784595888396566528 |
---|---|
author | Graham, Adam J Schilling, Richard J |
author_facet | Graham, Adam J Schilling, Richard J |
author_sort | Graham, Adam J |
collection | PubMed |
description | Non-invasive electrocardiographic imaging (ECGI) is a novel clinical tool for mapping ventricular arrhythmia. Using multiple body surface electrodes to collect unipolar electrograms and conventional medical imaging of the heart, an epicardial shell can be created to display calculated electrograms. This calculation is achieved by solving the inverse problem and allows activation times to be calculated from a single beat. The technology was initially pioneered in the US using an experimental torso-shaped tank. Accuracy from studies in humans has varied. Early data was promising, with more recent work suggesting only moderate accuracy when reproducing cardiac activation. Despite these limitations, the system has been successfully used in pioneering work with non-invasive cardiac radioablation to treat ventricular arrhythmia. This suggests that the resolution may be sufficient for treatment of large target areas. Although untested in a well conducted clinical study it is likely that it would not be accurate enough to guide more discreet radiofrequency ablation. |
format | Online Article Text |
id | pubmed-8576495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Radcliffe Cardiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-85764952021-11-12 The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia Graham, Adam J Schilling, Richard J Arrhythm Electrophysiol Rev Electrophysiology and Ablation Non-invasive electrocardiographic imaging (ECGI) is a novel clinical tool for mapping ventricular arrhythmia. Using multiple body surface electrodes to collect unipolar electrograms and conventional medical imaging of the heart, an epicardial shell can be created to display calculated electrograms. This calculation is achieved by solving the inverse problem and allows activation times to be calculated from a single beat. The technology was initially pioneered in the US using an experimental torso-shaped tank. Accuracy from studies in humans has varied. Early data was promising, with more recent work suggesting only moderate accuracy when reproducing cardiac activation. Despite these limitations, the system has been successfully used in pioneering work with non-invasive cardiac radioablation to treat ventricular arrhythmia. This suggests that the resolution may be sufficient for treatment of large target areas. Although untested in a well conducted clinical study it is likely that it would not be accurate enough to guide more discreet radiofrequency ablation. Radcliffe Cardiology 2021-10 /pmc/articles/PMC8576495/ /pubmed/34777827 http://dx.doi.org/10.15420/aer.2021.27 Text en Copyright © 2021, Radcliffe Cardiology https://creativecommons.org/licenses/by-nc/4.0/This work is open access under the CC-BY-NC 4.0 License which allows users to copy, redistribute and make derivative works for non-commercial purposes, provided the original work is cited correctly. |
spellingShingle | Electrophysiology and Ablation Graham, Adam J Schilling, Richard J The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia |
title | The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia |
title_full | The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia |
title_fullStr | The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia |
title_full_unstemmed | The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia |
title_short | The Use of Electrocardiographic Imaging in Localising the Origin of Arrhythmias During Catheter Ablation of Ventricular Tachycardia |
title_sort | use of electrocardiographic imaging in localising the origin of arrhythmias during catheter ablation of ventricular tachycardia |
topic | Electrophysiology and Ablation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576495/ https://www.ncbi.nlm.nih.gov/pubmed/34777827 http://dx.doi.org/10.15420/aer.2021.27 |
work_keys_str_mv | AT grahamadamj theuseofelectrocardiographicimaginginlocalisingtheoriginofarrhythmiasduringcatheterablationofventriculartachycardia AT schillingrichardj theuseofelectrocardiographicimaginginlocalisingtheoriginofarrhythmiasduringcatheterablationofventriculartachycardia AT grahamadamj useofelectrocardiographicimaginginlocalisingtheoriginofarrhythmiasduringcatheterablationofventriculartachycardia AT schillingrichardj useofelectrocardiographicimaginginlocalisingtheoriginofarrhythmiasduringcatheterablationofventriculartachycardia |