Cargando…
Deepfake tweets classification using stacked Bi-LSTM and words embedding
The spread of altered media in the form of fake videos, audios, and images, has been largely increased over the past few years. Advanced digital manipulation tools and techniques make it easier to generate fake content and post it on social media. In addition, tweets with deep fake content make thei...
Autores principales: | Rupapara, Vaibhav, Rustam, Furqan, Amaar, Aashir, Washington, Patrick Bernard, Lee, Ernesto, Ashraf, Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576542/ https://www.ncbi.nlm.nih.gov/pubmed/34805502 http://dx.doi.org/10.7717/peerj-cs.745 |
Ejemplares similares
-
Deepfake attack prevention using steganography GANs
por: Noreen, Iram, et al.
Publicado: (2022) -
Deepfake video detection: YOLO-Face convolution recurrent approach
por: Ismail, Aya, et al.
Publicado: (2021) -
Self voting classification model for online meeting app review sentiment analysis and topic modeling
por: Aslam, Naila, et al.
Publicado: (2022) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Augmenting Semantic Lexicons Using Word Embeddings and Transfer Learning
por: Alshaabi, Thayer, et al.
Publicado: (2022)