Cargando…
Inheritance metrics feats in unsupervised learning to classify unlabeled datasets and clusters in fault prediction
Fault prediction is a necessity to deliver high-quality software. The absence of training data and mechanism to labeling a cluster faulty or fault-free is a topic of concern in software fault prediction (SFP). Inheritance is an important feature of object-oriented development, and its metrics measur...
Autores principales: | Aziz, Syed Rashid, Khan, Tamim Ahmed, Nadeem, Aamer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576544/ https://www.ncbi.nlm.nih.gov/pubmed/34805500 http://dx.doi.org/10.7717/peerj-cs.722 |
Ejemplares similares
-
Vovel metrics—novel coupling metrics for improved software fault prediction
por: Muhammad, Rizwan, et al.
Publicado: (2021) -
Exclusive use and evaluation of inheritance metrics viability in software fault prediction—an experimental study
por: Aziz, Syed Rashid, et al.
Publicado: (2021) -
ECAsT: a large dataset for conversational search and an evaluation of metric robustness
por: Al-Thani, Haya, et al.
Publicado: (2023) -
Unsupervised online multitask learning of behavioral sentence embeddings
por: Tseng, Shao-Yen, et al.
Publicado: (2019) -
Evaluation of MRI Denoising Methods Using Unsupervised Learning
por: Moreno López, Marc, et al.
Publicado: (2021)