Cargando…
Approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm
Determining the critical nodes in a complex network is an essential computation problem. Several variants of this problem have emerged due to its wide applicability in network analysis. In this article we study the bi-objective critical node detection problem (BOCNDP), which is a new variant of the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576564/ https://www.ncbi.nlm.nih.gov/pubmed/34805505 http://dx.doi.org/10.7717/peerj-cs.750 |
_version_ | 1784595902701240320 |
---|---|
author | Béczi, Eliézer Gaskó, Noémi |
author_facet | Béczi, Eliézer Gaskó, Noémi |
author_sort | Béczi, Eliézer |
collection | PubMed |
description | Determining the critical nodes in a complex network is an essential computation problem. Several variants of this problem have emerged due to its wide applicability in network analysis. In this article we study the bi-objective critical node detection problem (BOCNDP), which is a new variant of the well-known critical node detection problem, optimizing two objectives at the same time: maximizing the number of connected components and minimizing the variance of their cardinalities. Evolutionary multi-objective algorithms (EMOA) are a straightforward choice to solve this type of problem. We propose three different smart initialization strategies which can be incorporated into any EMOA. These initialization strategies take into account the basic properties of the networks. They are based on the highest degree, random walk (RW) and depth-first search. Numerical experiments were conducted on synthetic and real-world network data. The three different initialization types significantly improve the performance of the EMOA. |
format | Online Article Text |
id | pubmed-8576564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85765642021-11-19 Approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm Béczi, Eliézer Gaskó, Noémi PeerJ Comput Sci Algorithms and Analysis of Algorithms Determining the critical nodes in a complex network is an essential computation problem. Several variants of this problem have emerged due to its wide applicability in network analysis. In this article we study the bi-objective critical node detection problem (BOCNDP), which is a new variant of the well-known critical node detection problem, optimizing two objectives at the same time: maximizing the number of connected components and minimizing the variance of their cardinalities. Evolutionary multi-objective algorithms (EMOA) are a straightforward choice to solve this type of problem. We propose three different smart initialization strategies which can be incorporated into any EMOA. These initialization strategies take into account the basic properties of the networks. They are based on the highest degree, random walk (RW) and depth-first search. Numerical experiments were conducted on synthetic and real-world network data. The three different initialization types significantly improve the performance of the EMOA. PeerJ Inc. 2021-10-21 /pmc/articles/PMC8576564/ /pubmed/34805505 http://dx.doi.org/10.7717/peerj-cs.750 Text en ©2021 Béczi and Gaskó https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Algorithms and Analysis of Algorithms Béczi, Eliézer Gaskó, Noémi Approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm |
title | Approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm |
title_full | Approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm |
title_fullStr | Approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm |
title_full_unstemmed | Approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm |
title_short | Approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm |
title_sort | approaching the bi-objective critical node detection problem with a smart initialization-based evolutionary algorithm |
topic | Algorithms and Analysis of Algorithms |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576564/ https://www.ncbi.nlm.nih.gov/pubmed/34805505 http://dx.doi.org/10.7717/peerj-cs.750 |
work_keys_str_mv | AT beczieliezer approachingthebiobjectivecriticalnodedetectionproblemwithasmartinitializationbasedevolutionaryalgorithm AT gaskonoemi approachingthebiobjectivecriticalnodedetectionproblemwithasmartinitializationbasedevolutionaryalgorithm |