Cargando…
Deep-Learning Radiomics for Discrimination Conversion of Alzheimer's Disease in Patients With Mild Cognitive Impairment: A Study Based on (18)F-FDG PET Imaging
Objectives: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the older people. Some types of mild cognitive impairment (MCI) are the clinical precursors of AD, while other MCI forms tend to remain stable over time and do not progr...
Autores principales: | Zhou, Ping, Zeng, Rong, Yu, Lun, Feng, Yabo, Chen, Chuxin, Li, Fang, Liu, Yang, Huang, Yanhui, Huang, Zhongxiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576572/ https://www.ncbi.nlm.nih.gov/pubmed/34764864 http://dx.doi.org/10.3389/fnagi.2021.764872 |
Ejemplares similares
-
Use of a Sparse-Response Deep Belief Network and Extreme Learning Machine to Discriminate Alzheimer's Disease, Mild Cognitive Impairment, and Normal Controls Based on Amyloid PET/MRI Images
por: Zhou, Ping, et al.
Publicado: (2021) -
Assessing radiomic feature robustness to interpolation in (18)F-FDG PET imaging
por: Whybra, Philip, et al.
Publicado: (2019) -
Radiomic Features of (18)F-FDG PET in Hodgkin Lymphoma Are Predictive of Outcomes
por: Zhou, Yeye, et al.
Publicado: (2021) -
The Influence of the Exclusion of Central Necrosis on [(18)F]FDG PET Radiomic Analysis
por: Noortman, Wyanne A., et al.
Publicado: (2021) -
(18)F-FDG PET for Prediction of Conversion to Alzheimer’s Disease Dementia in People with Mild Cognitive Impairment: An Updated Systematic Review of Test Accuracy
por: Smailagic, Nadja, et al.
Publicado: (2018)