Cargando…
Adverse Drug Event Prediction Using Noisy Literature-Derived Knowledge Graphs: Algorithm Development and Validation
BACKGROUND: Adverse drug events (ADEs) are unintended side effects of drugs that cause substantial clinical and economic burdens globally. Not all ADEs are discovered during clinical trials; therefore, postmarketing surveillance, called pharmacovigilance, is routinely conducted to find unknown ADEs....
Autores principales: | Dasgupta, Soham, Jayagopal, Aishwarya, Jun Hong, Abel Lim, Mariappan, Ragunathan, Rajan, Vaibhav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576589/ https://www.ncbi.nlm.nih.gov/pubmed/34694230 http://dx.doi.org/10.2196/32730 |
Ejemplares similares
-
Patient Representation Learning From Heterogeneous Data Sources and Knowledge Graphs Using Deep Collective Matrix Factorization: Evaluation Study
por: Kumar, Sajit, et al.
Publicado: (2022) -
Embedding Learning with Triple Trustiness on Noisy Knowledge Graph
por: Zhao, Yu, et al.
Publicado: (2019) -
Noisy Monte Carlo Algorithm
por: Bakeyev, Timur D., et al.
Publicado: (2001) -
An algorithm for noisy template matching
por: Zahn, C T
Publicado: (1974) -
kngMap: Sensitive and Fast Mapping Algorithm for Noisy Long Reads Based on the K-Mer Neighborhood Graph
por: Wei, Ze-Gang, et al.
Publicado: (2022)