Cargando…

A multidimensional nomogram combining imaging features and clinical factors to predict the invasiveness and metastasis of combined hepatocellular cholangiocarcinoma

BACKGROUND: Combined hepatocellular cholangiocarcinoma (CHCC-CCA) is a rare type of primary liver cancer having aggressive behavior. Few studies have investigated the prognostic factors of CHCC-CCA. Therefore, this study aimed to establish a nomogram to evaluate the risk of microvascular invasion (M...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yi, Zhou, Chang-Wu, Zhu, Gui-Qi, Li, Na, Qian, Xian-Ling, Chong, Huan-Huan, Yang, Chun, Zeng, Meng-Su
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576707/
https://www.ncbi.nlm.nih.gov/pubmed/34790724
http://dx.doi.org/10.21037/atm-21-2500
Descripción
Sumario:BACKGROUND: Combined hepatocellular cholangiocarcinoma (CHCC-CCA) is a rare type of primary liver cancer having aggressive behavior. Few studies have investigated the prognostic factors of CHCC-CCA. Therefore, this study aimed to establish a nomogram to evaluate the risk of microvascular invasion (MVI) and the presence of satellite nodules and lymph node metastasis (LNM), which are associated with prognosis. METHODS: One hundred and seventy-one patients pathologically diagnosed with CHCC-CCA were divided into a training set (n=116) and validation set (n=55). Logistic regression analysis was used to assess the relative value of clinical factors associated with the presence of MVI and satellite nodules. The least absolute shrinkage and selection operator (LASSO) algorithm was used to establish the imaging model of all outcomes, and to build clinical model of LNM. Nomograms were constructed by incorporating clinical risk factors and imaging features. The model performance was evaluated on the training and validation sets to determine its discrimination ability, calibration, and clinical utility. Kaplan Meier analysis and time dependent receiver operating characteristic (ROC) were displayed to evaluate the prognosis value of the predicted nomograms of MVI and satellite nodule. RESULTS: A nomogram comprising the platelet to lymphocyte ratio (PLR), albumin-to-alkaline phosphatase ratio (AAPR) and imaging model was established for the prediction of MVI. Carcinoembryonic antigen (CEA) level and size were combined with the imaging model to establish a nomogram for the prediction of the presence of satellite nodules. Favorable calibration and discrimination were observed in the training and validation sets for the MVI nomogram (C-indexes of 0.857 and 0.795), the nomogram for predicting satellite nodules (C-indexes of 0.919 and 0.883) and the LNM nomogram (C-indexes of 0.872 and 0.666). Decision curve analysis (DCA) further confirmed the clinical utility of the nomograms. The preoperatively predicted MVI and satellite nodules by the combined nomograms achieved satisfactory performance in recurrence-free survival (RFS) and overall survival (OS) prediction. CONCLUSIONS: The proposed nomograms incorporating clinical risk factors and imaging features achieved satisfactory performance for individualized preoperative predictions of MVI, the presence of satellite nodules, and LNM. The prediction models were demonstrated to be good indicator for predicting the prognosis of CHCC-CCA, facilitating treatment strategy optimization for patients with CHCC-CCA.