Cargando…

Development of immune gene pair-based signature predictive of prognosis and immunotherapy in esophageal cancer

BACKGROUND: Esophageal cancer (EC) is one of the deadliest solid malignancies, mainly consisting of esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). Robust biomarkers that can improve patient risk stratification are needed to optimize cancer management. We sought to establish pote...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Kui, Ma, Tianjiao, Ling, Xiaodong, Liu, Mingdong, Jiang, Xiangyu, Ma, Keru, Zhu, Jinhong, Ma, Jianqun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576717/
https://www.ncbi.nlm.nih.gov/pubmed/34790797
http://dx.doi.org/10.21037/atm-21-5217
Descripción
Sumario:BACKGROUND: Esophageal cancer (EC) is one of the deadliest solid malignancies, mainly consisting of esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). Robust biomarkers that can improve patient risk stratification are needed to optimize cancer management. We sought to establish potent prognostic signatures with immune-related gene (IRG) pairs for ESCC and EAC. METHODS: We obtained differentially expressed IRGs by intersecting the Immunology Database and Analysis Portal (ImmPort) with the transcriptome data set of The Cancer Genome Atlas (TCGA)-ESCC and EAC cohorts. A novel rank-based pairwise comparison algorithm was applied to select effective IRG pairs (IRGPs), followed by constructing a prognostic IRGP signature via the least absolute shrinkage and selection operator (LASSO) regression model. We assessed the predictive power of the IRGP signatures on prognosis, tumor-infiltrating immune cells, and immune checkpoint inhibitor (ICI) efficacy in EC. Kaplan-Meier survival analysis and receiver operating characteristic curves (ROC) were used to evaluate the clinical significance of IRGPs. Univariate and multivariate Cox regression analyses were performed to investigate the association of overall survival (OS) with IRGPs and clinical characteristics. RESULTS: We built a 19-IRGP signature for ESCC (n=75) and a 17-IRGP signature for EAC (n=78), with an area under the ROC curve (AUC) of 0.931 and 0.803, respectively. IRGP signature-derived risk scores stratified patients into low- and high-risk groups with significantly different OS in ESCC and EAC (P<0.001). Nomogram and decision curve analysis were used to evaluate the clinical relevance of the prognostic signatures, achieving a C-index of 0.973 in ESCC and 0.880 in EAC. The risk scores were associated with immune and ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) scores and the composition of immune cells in the tumor microenvironment. The association between risk score and human leukocyte antigens (HLAs), mismatch repair (MMR) genes, and immune checkpoint molecules demonstrated its predictive value for ICI response. Differential immune characteristics and predictive value of the risk score were observed in EAC. CONCLUSIONS: The established immune signatures showed great promise in predicting prognosis, tumor immunogenicity, and immunotherapy response in ESCC and EAC.