Cargando…

Development and application of a dynamic prediction model for esophageal cancer

BACKGROUND: Current prediction models of esophageal cancer (EC) are limited to predicting at a specific time point, and ignore changes in hazard ratios of predictive variables, known as time-varying effects. Our study aimed to investigate variables with time-varying effects in EC and to develop a pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Kunpeng, Li, Lixian, Wang, Qi, Zou, Jingwen, Yu, Zhongjian, Li, Jiqiang, Zheng, Yanfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576729/
https://www.ncbi.nlm.nih.gov/pubmed/34790752
http://dx.doi.org/10.21037/atm-21-4964
Descripción
Sumario:BACKGROUND: Current prediction models of esophageal cancer (EC) are limited to predicting at a specific time point, and ignore changes in hazard ratios of predictive variables, known as time-varying effects. Our study aimed to investigate variables with time-varying effects in EC and to develop a prediction model that can update the 5-year predicted dynamic overall survival (DOS) probability during the follow-up period. METHODS: Firstly, the clinicopathological information and survival data of 4,541 patients with EC was obtained from the Surveillance, Epidemiology, and End Results (SEER) database between 2007 and 2011 for modeling. Secondly, the time-varying effect of variables was assessed and the dynamic prediction model was developed based on the proportional baselines landmark supermodel. RESULTS: Here, we found that age at diagnosis, sex, location of primary tumor, histological type, chemotherapy, surgery, and T stage showed significant time-varying effects on overall survival. Thirdly, the prediction model was validated by an internal SEER validation cohort and a Chinese patient cohort, respectively, and achieved promising results as follows: area under the curve (AUC) =0.733 (internal validation) and 0.864 (external validation). The heuristic shrinkage factor was 0.995. Finally, several clear cases were selected as examples for model application to map the patient’s 5-year DOS curves and to respectively demonstrate the impact of different variables’ time-varying effect on survival. CONCLUSIONS: Overall, our results suggest that the existence of time-varying effect highlights the importance of updating the predicted survival probability during the follow-up period. Moreover, this prediction model can be used to assist doctors in making more-individualized treatment decisions based on a dynamic assessment of patient prognosis.