Cargando…

Enantioseparation of P-Stereogenic Secondary Phosphine Oxides and Their Stereospecific Transformation to Various Tertiary Phosphine Oxides and a Thiophosphinate

[Image: see text] Secondary phosphine oxides incorporating various aryl and alkyl groups were synthesized in racemic form, and these products formed the library reported in this study. TADDOL derivatives were used to obtain the optical resolution of these P-stereogenic secondary phosphine oxides. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Varga, Bence, Szemesi, Péter, Nagy, Petra, Herbay, Réka, Holczbauer, Tamás, Fogassy, Elemér, Keglevich, György, Bagi, Péter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576816/
https://www.ncbi.nlm.nih.gov/pubmed/34633814
http://dx.doi.org/10.1021/acs.joc.1c01364
Descripción
Sumario:[Image: see text] Secondary phosphine oxides incorporating various aryl and alkyl groups were synthesized in racemic form, and these products formed the library reported in this study. TADDOL derivatives were used to obtain the optical resolution of these P-stereogenic secondary phosphine oxides. The developed resolution method showed a good scope under the optimized reaction conditions, as 9 out of 14 derivatives could be prepared with an enantiomeric excess (ee) ≥ 79% and 5 of these derivatives were practically enantiopure >P(O)H compounds (ee ≥ 98%). The scalability of this resolution method was also demonstrated. Noncovalent interactions responsible for the formation of diasteromeric complexes were elucidated by single-crystal XRD measurements. (S)-(2-Methylphenyl)phenylphosphine oxide was transformed to a variety of P-stereogenic tertiary phosphine oxides and a thiophosphinate in stereospecific Michaelis–Becker, Hirao, or Pudovik reactions.