Cargando…
Quantifying the impact of addressing data challenges in prediction of length of stay
BACKGROUND: Prediction of length of stay (LOS) at admission time can provide physicians and nurses insight into the illness severity of patients and aid them in avoiding adverse events and clinical deterioration. It also assists hospitals with more effectively managing their resources and manpower....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576901/ https://www.ncbi.nlm.nih.gov/pubmed/34749708 http://dx.doi.org/10.1186/s12911-021-01660-1 |
_version_ | 1784595971164864512 |
---|---|
author | Naemi, Amin Schmidt, Thomas Mansourvar, Marjan Ebrahimi, Ali Wiil, Uffe Kock |
author_facet | Naemi, Amin Schmidt, Thomas Mansourvar, Marjan Ebrahimi, Ali Wiil, Uffe Kock |
author_sort | Naemi, Amin |
collection | PubMed |
description | BACKGROUND: Prediction of length of stay (LOS) at admission time can provide physicians and nurses insight into the illness severity of patients and aid them in avoiding adverse events and clinical deterioration. It also assists hospitals with more effectively managing their resources and manpower. METHODS: In this field of research, there are some important challenges, such as missing values and LOS data skewness. Moreover, various studies use a binary classification which puts a wide range of patients with different conditions into one category. To address these shortcomings, first multivariate imputation techniques are applied to fill incomplete records, then two proper resampling techniques, namely Borderline-SMOTE and SMOGN, are applied to address data skewness in the classification and regression domains, respectively. Finally, machine learning (ML) techniques including neural networks, extreme gradient boosting, random forest, support vector machine, and decision tree are implemented for both approaches to predict LOS of patients admitted to the Emergency Department of Odense University Hospital between June 2018 and April 2019. The ML models are developed based on data obtained from patients at admission time, including pulse rate, arterial blood oxygen saturation, respiratory rate, systolic blood pressure, triage category, arrival ICD-10 codes, age, and gender. RESULTS: The performance of predictive models before and after addressing missing values and data skewness is evaluated using four evaluation metrics namely receiver operating characteristic, area under the curve (AUC), R-squared score (R(2)), and normalized root mean square error (NRMSE). Results show that the performance of predictive models is improved on average by 15.75% for AUC, 32.19% for R(2) score, and 11.32% for NRMSE after addressing the mentioned challenges. Moreover, our results indicate that there is a relationship between the missing values rate, data skewness, and illness severity of patients, so it is clinically essential to take incomplete records of patients into account and apply proper solutions for interpolation of missing values. CONCLUSION: We propose a new method comprised of three stages: missing values imputation, data skewness handling, and building predictive models based on classification and regression approaches. Our results indicated that addressing these challenges in a proper way enhanced the performance of models significantly, which led to a more valid prediction of LOS. |
format | Online Article Text |
id | pubmed-8576901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-85769012021-11-10 Quantifying the impact of addressing data challenges in prediction of length of stay Naemi, Amin Schmidt, Thomas Mansourvar, Marjan Ebrahimi, Ali Wiil, Uffe Kock BMC Med Inform Decis Mak Research BACKGROUND: Prediction of length of stay (LOS) at admission time can provide physicians and nurses insight into the illness severity of patients and aid them in avoiding adverse events and clinical deterioration. It also assists hospitals with more effectively managing their resources and manpower. METHODS: In this field of research, there are some important challenges, such as missing values and LOS data skewness. Moreover, various studies use a binary classification which puts a wide range of patients with different conditions into one category. To address these shortcomings, first multivariate imputation techniques are applied to fill incomplete records, then two proper resampling techniques, namely Borderline-SMOTE and SMOGN, are applied to address data skewness in the classification and regression domains, respectively. Finally, machine learning (ML) techniques including neural networks, extreme gradient boosting, random forest, support vector machine, and decision tree are implemented for both approaches to predict LOS of patients admitted to the Emergency Department of Odense University Hospital between June 2018 and April 2019. The ML models are developed based on data obtained from patients at admission time, including pulse rate, arterial blood oxygen saturation, respiratory rate, systolic blood pressure, triage category, arrival ICD-10 codes, age, and gender. RESULTS: The performance of predictive models before and after addressing missing values and data skewness is evaluated using four evaluation metrics namely receiver operating characteristic, area under the curve (AUC), R-squared score (R(2)), and normalized root mean square error (NRMSE). Results show that the performance of predictive models is improved on average by 15.75% for AUC, 32.19% for R(2) score, and 11.32% for NRMSE after addressing the mentioned challenges. Moreover, our results indicate that there is a relationship between the missing values rate, data skewness, and illness severity of patients, so it is clinically essential to take incomplete records of patients into account and apply proper solutions for interpolation of missing values. CONCLUSION: We propose a new method comprised of three stages: missing values imputation, data skewness handling, and building predictive models based on classification and regression approaches. Our results indicated that addressing these challenges in a proper way enhanced the performance of models significantly, which led to a more valid prediction of LOS. BioMed Central 2021-10-30 /pmc/articles/PMC8576901/ /pubmed/34749708 http://dx.doi.org/10.1186/s12911-021-01660-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Naemi, Amin Schmidt, Thomas Mansourvar, Marjan Ebrahimi, Ali Wiil, Uffe Kock Quantifying the impact of addressing data challenges in prediction of length of stay |
title | Quantifying the impact of addressing data challenges in prediction of length of stay |
title_full | Quantifying the impact of addressing data challenges in prediction of length of stay |
title_fullStr | Quantifying the impact of addressing data challenges in prediction of length of stay |
title_full_unstemmed | Quantifying the impact of addressing data challenges in prediction of length of stay |
title_short | Quantifying the impact of addressing data challenges in prediction of length of stay |
title_sort | quantifying the impact of addressing data challenges in prediction of length of stay |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576901/ https://www.ncbi.nlm.nih.gov/pubmed/34749708 http://dx.doi.org/10.1186/s12911-021-01660-1 |
work_keys_str_mv | AT naemiamin quantifyingtheimpactofaddressingdatachallengesinpredictionoflengthofstay AT schmidtthomas quantifyingtheimpactofaddressingdatachallengesinpredictionoflengthofstay AT mansourvarmarjan quantifyingtheimpactofaddressingdatachallengesinpredictionoflengthofstay AT ebrahimiali quantifyingtheimpactofaddressingdatachallengesinpredictionoflengthofstay AT wiiluffekock quantifyingtheimpactofaddressingdatachallengesinpredictionoflengthofstay |