Cargando…
Quantifying the impact of addressing data challenges in prediction of length of stay
BACKGROUND: Prediction of length of stay (LOS) at admission time can provide physicians and nurses insight into the illness severity of patients and aid them in avoiding adverse events and clinical deterioration. It also assists hospitals with more effectively managing their resources and manpower....
Autores principales: | Naemi, Amin, Schmidt, Thomas, Mansourvar, Marjan, Ebrahimi, Ali, Wiil, Uffe Kock |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576901/ https://www.ncbi.nlm.nih.gov/pubmed/34749708 http://dx.doi.org/10.1186/s12911-021-01660-1 |
Ejemplares similares
-
Machine learning techniques for mortality prediction in emergency departments: a systematic review
por: Naemi, Amin, et al.
Publicado: (2021) -
Identification of clinical factors related to prediction of alcohol use disorder from electronic health records using feature selection methods
por: Ebrahimi, Ali, et al.
Publicado: (2022) -
Cross-Cultural Bayesian Network Analysis of Factors Affecting Residents’ Concerns About the Spread of an Infectious Disease Caused by Tourism
por: Glückstad, Fumiko Kano, et al.
Publicado: (2021) -
Application of machine learning techniques for predicting survival in ovarian cancer
por: Sorayaie Azar, Amir, et al.
Publicado: (2022) -
Monkeypox detection using deep neural networks
por: Sorayaie Azar, Amir, et al.
Publicado: (2023)