Cargando…
Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions
BACKGROUND: Accurate prediction of protein–ligand binding affinity is important for lowering the overall cost of drug discovery in structure-based drug design. For accurate predictions, many classical scoring functions and machine learning-based methods have been developed. However, these techniques...
Autores principales: | Seo, Sangmin, Choi, Jonghwan, Park, Sanghyun, Ahn, Jaegyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576937/ https://www.ncbi.nlm.nih.gov/pubmed/34749664 http://dx.doi.org/10.1186/s12859-021-04466-0 |
Ejemplares similares
-
Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms
por: Seo, Sangmin, et al.
Publicado: (2018) -
G2Vec: Distributed gene representations for identification of cancer prognostic genes
por: Choi, Jonghwan, et al.
Publicado: (2018) -
RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance
por: Choi, Jonghwan, et al.
Publicado: (2020) -
Protein-ligand binding affinity prediction based on profiles of intermolecular contacts
por: Wang, Debby D., et al.
Publicado: (2022) -
COMA: efficient structure-constrained molecular generation using contractive and margin losses
por: Choi, Jonghwan, et al.
Publicado: (2023)