Cargando…
Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation
BACKGROUND: Atrial fibrillation is a paroxysmal heart disease without any obvious symptoms for most people during the onset. The electrocardiogram (ECG) at the time other than the onset of this disease is not significantly different from that of normal people, which makes it difficult to detect and...
Autores principales: | Wu, Cai, Hwang, Maxwell, Huang, Tian-Hsiang, Chen, Yen-Ming J., Chang, Yiu-Jen, Ho, Tsung-Han, Huang, Jian, Hwang, Kao-Shing, Ho, Wen-Hsien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576960/ https://www.ncbi.nlm.nih.gov/pubmed/34749631 http://dx.doi.org/10.1186/s12859-021-04000-2 |
Ejemplares similares
-
Prediction of vancomycin initial dosage using artificial intelligence models applying ensemble strategy
por: Ho, Wen-Hsien, et al.
Publicado: (2023) -
Artificial Intelligence for the Detection and Treatment of Atrial Fibrillation
por: Harmon, David M, et al.
Publicado: (2023) -
Artificial intelligence for the detection, prediction, and management of atrial fibrillation
por: Isaksen, Jonas L., et al.
Publicado: (2022) -
The Use of Artificial Intelligence to Predict the Development of Atrial Fibrillation
por: Pipilas, Daniel, et al.
Publicado: (2023) -
Artificial Intelligence in the Image-Guided Care of Atrial Fibrillation
por: Lyu, Yiheng, et al.
Publicado: (2023)