Cargando…
Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions
The hippocampus and amygdala are functionally coupled brain regions that play a crucial role in processes involving memory and learning. Because interareal communication has been reported both during specific sleep stages and in awake, behaving animals, these brain regions can serve as an archetype...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577062/ https://www.ncbi.nlm.nih.gov/pubmed/34544761 http://dx.doi.org/10.1523/ENEURO.0484-20.2021 |
_version_ | 1784596001699397632 |
---|---|
author | Cocina, Francesco Vitalis, Andreas Caflisch, Amedeo |
author_facet | Cocina, Francesco Vitalis, Andreas Caflisch, Amedeo |
author_sort | Cocina, Francesco |
collection | PubMed |
description | The hippocampus and amygdala are functionally coupled brain regions that play a crucial role in processes involving memory and learning. Because interareal communication has been reported both during specific sleep stages and in awake, behaving animals, these brain regions can serve as an archetype to establish that measuring functional interactions is important for comprehending neural systems. To this end, we analyze here a public dataset of local field potentials (LFPs) recorded in rats simultaneously from the hippocampus and amygdala during different behaviors. Employing a specific, time-lagged embedding technique, named topological causality (TC), we infer directed interactions between the LFP band powers of the two regions across six frequency bands in a time-resolved manner. The combined power and interaction signals are processed with our own unsupervised tools developed originally for the analysis of molecular dynamics simulations to effectively visualize and identify putative, neural states that are visited by the animals repeatedly. Our proposed methodology minimizes impositions onto the data, such as isolating specific epochs, or averaging across externally annotated behavioral stages, and succeeds in separating internal states by external labels such as sleep or stimulus events. We show that this works better for two of the three rats we analyzed, and highlight the need to acknowledge individuality in analyses of this type. Importantly, we demonstrate that the quantification of functional interactions is a significant factor in discriminating these external labels, and we suggest our methodology as a general tool for large, multisite recordings. |
format | Online Article Text |
id | pubmed-8577062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-85770622021-11-09 Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions Cocina, Francesco Vitalis, Andreas Caflisch, Amedeo eNeuro Research Article: New Research The hippocampus and amygdala are functionally coupled brain regions that play a crucial role in processes involving memory and learning. Because interareal communication has been reported both during specific sleep stages and in awake, behaving animals, these brain regions can serve as an archetype to establish that measuring functional interactions is important for comprehending neural systems. To this end, we analyze here a public dataset of local field potentials (LFPs) recorded in rats simultaneously from the hippocampus and amygdala during different behaviors. Employing a specific, time-lagged embedding technique, named topological causality (TC), we infer directed interactions between the LFP band powers of the two regions across six frequency bands in a time-resolved manner. The combined power and interaction signals are processed with our own unsupervised tools developed originally for the analysis of molecular dynamics simulations to effectively visualize and identify putative, neural states that are visited by the animals repeatedly. Our proposed methodology minimizes impositions onto the data, such as isolating specific epochs, or averaging across externally annotated behavioral stages, and succeeds in separating internal states by external labels such as sleep or stimulus events. We show that this works better for two of the three rats we analyzed, and highlight the need to acknowledge individuality in analyses of this type. Importantly, we demonstrate that the quantification of functional interactions is a significant factor in discriminating these external labels, and we suggest our methodology as a general tool for large, multisite recordings. Society for Neuroscience 2021-11-02 /pmc/articles/PMC8577062/ /pubmed/34544761 http://dx.doi.org/10.1523/ENEURO.0484-20.2021 Text en Copyright © 2021 Cocina et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article: New Research Cocina, Francesco Vitalis, Andreas Caflisch, Amedeo Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions |
title | Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions |
title_full | Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions |
title_fullStr | Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions |
title_full_unstemmed | Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions |
title_short | Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions |
title_sort | unsupervised methods for detection of neural states: case study of hippocampal-amygdala interactions |
topic | Research Article: New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577062/ https://www.ncbi.nlm.nih.gov/pubmed/34544761 http://dx.doi.org/10.1523/ENEURO.0484-20.2021 |
work_keys_str_mv | AT cocinafrancesco unsupervisedmethodsfordetectionofneuralstatescasestudyofhippocampalamygdalainteractions AT vitalisandreas unsupervisedmethodsfordetectionofneuralstatescasestudyofhippocampalamygdalainteractions AT caflischamedeo unsupervisedmethodsfordetectionofneuralstatescasestudyofhippocampalamygdalainteractions |