Cargando…
Comparison of deep learning systems and cornea specialists in detecting corneal diseases from low-quality images
The performance of deep learning in disease detection from high-quality clinical images is identical to and even greater than that of human doctors. However, in low-quality images, deep learning performs poorly. Whether human doctors also have poor performance in low-quality images is unknown. Here,...
Autores principales: | Li, Zhongwen, Jiang, Jiewei, Qiang, Wei, Guo, Liufei, Liu, Xiaotian, Weng, Hongfei, Wu, Shanjun, Zheng, Qinxiang, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577078/ https://www.ncbi.nlm.nih.gov/pubmed/34778732 http://dx.doi.org/10.1016/j.isci.2021.103317 |
Ejemplares similares
-
Preventing corneal blindness caused by keratitis using artificial intelligence
por: Li, Zhongwen, et al.
Publicado: (2021) -
High-intensity corneal collagen crosslinking with riboflavin and UVA in rat cornea
por: Zhu, Yirui, et al.
Publicado: (2017) -
Deep learning for detecting visually impaired cataracts using fundus images
por: Xie, He, et al.
Publicado: (2023) -
Corneal Transplantation on Opaque Corneas
por: Kirwan, E. O'G.
Publicado: (1935) -
Relation of Corneal Astigmatism with Various Corneal Image Quality Parameters in a Large Cohort of Naïve Corneas
por: Omar Yousif, Mohamed, et al.
Publicado: (2020)