Cargando…

Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat

Heavy metal contamination is a universal concern due to health risks associated with metal pollution. Soil contamination by heavy metals is known to affect microbial activities at elevated concentrations adversely. However, indigenous soil bacterial populations' response to added heavy metal an...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Snigdha, Hiranmai, R.Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577108/
https://www.ncbi.nlm.nih.gov/pubmed/34778577
http://dx.doi.org/10.1016/j.heliyon.2021.e08284
_version_ 1784596011444862976
author Singh, Snigdha
Hiranmai, R.Y.
author_facet Singh, Snigdha
Hiranmai, R.Y.
author_sort Singh, Snigdha
collection PubMed
description Heavy metal contamination is a universal concern due to health risks associated with metal pollution. Soil contamination by heavy metals is known to affect microbial activities at elevated concentrations adversely. However, indigenous soil bacterial populations' response to added heavy metal and metal combinations is poorly understood. Microbes prevailing in the soil are the driving factors. Their properties are recognized as sensitive indicators of soil quality and health. Moreover, these microscopic organisms are accountable for the fertility and aeration of the soil that forms fundamental aspects of soil function. The current study was performed to explore the diversity of bacterial species in heavy metal polluted roadside soil. The roadside soil samples were collected from diverse sites and processed for physicochemical properties, microbial characterization, and heavy metals distribution in the selected locations. Serial dilution and spread plate techniques were used for the isolation of bacterial species. The 16S-rRNA gene sequencing identified bacterial species in roadside soil as Bacillus drentensis (MK217088), Bacillus safensis (MK774729), Bacillus haynesii (MK192808), Bacillus subtilis (MK217089), and Bacillus cereus (MK801278). In addition, the 16S rRNA sequences of isolated bacterial strains were aligned to generate a phylogenetic tree. Thus, the current research study provides a platform for efficiently investigating roadside soils by microbial profiling that may discover novel microbes of scientific significance and improved potential.
format Online
Article
Text
id pubmed-8577108
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-85771082021-11-12 Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat Singh, Snigdha Hiranmai, R.Y. Heliyon Research Article Heavy metal contamination is a universal concern due to health risks associated with metal pollution. Soil contamination by heavy metals is known to affect microbial activities at elevated concentrations adversely. However, indigenous soil bacterial populations' response to added heavy metal and metal combinations is poorly understood. Microbes prevailing in the soil are the driving factors. Their properties are recognized as sensitive indicators of soil quality and health. Moreover, these microscopic organisms are accountable for the fertility and aeration of the soil that forms fundamental aspects of soil function. The current study was performed to explore the diversity of bacterial species in heavy metal polluted roadside soil. The roadside soil samples were collected from diverse sites and processed for physicochemical properties, microbial characterization, and heavy metals distribution in the selected locations. Serial dilution and spread plate techniques were used for the isolation of bacterial species. The 16S-rRNA gene sequencing identified bacterial species in roadside soil as Bacillus drentensis (MK217088), Bacillus safensis (MK774729), Bacillus haynesii (MK192808), Bacillus subtilis (MK217089), and Bacillus cereus (MK801278). In addition, the 16S rRNA sequences of isolated bacterial strains were aligned to generate a phylogenetic tree. Thus, the current research study provides a platform for efficiently investigating roadside soils by microbial profiling that may discover novel microbes of scientific significance and improved potential. Elsevier 2021-10-29 /pmc/articles/PMC8577108/ /pubmed/34778577 http://dx.doi.org/10.1016/j.heliyon.2021.e08284 Text en © 2021 Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Singh, Snigdha
Hiranmai, R.Y.
Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat
title Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat
title_full Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat
title_fullStr Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat
title_full_unstemmed Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat
title_short Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat
title_sort monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along nh 8a, gujarat
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577108/
https://www.ncbi.nlm.nih.gov/pubmed/34778577
http://dx.doi.org/10.1016/j.heliyon.2021.e08284
work_keys_str_mv AT singhsnigdha monitoringandmolecularcharacterizationofbacterialspeciesinheavymetalscontaminatedroadsidesoilofselectedregionalongnh8agujarat
AT hiranmairy monitoringandmolecularcharacterizationofbacterialspeciesinheavymetalscontaminatedroadsidesoilofselectedregionalongnh8agujarat