Cargando…

Model-based assessment of mammalian cell metabolic functionalities using omics data

Omics experiments are ubiquitous in biological studies, leading to a deluge of data. However, it is still challenging to connect changes in these data to changes in cell functions because of complex interdependencies between genes, proteins, and metabolites. Here, we present a framework allowing res...

Descripción completa

Detalles Bibliográficos
Autores principales: Richelle, Anne, Kellman, Benjamin P., Wenzel, Alexander T., Chiang, Austin W.T., Reagan, Tyler, Gutierrez, Jahir M., Joshi, Chintan, Li, Shangzhong, Liu, Joanne K., Masson, Helen, Lee, Jooyong, Li, Zerong, Heirendt, Laurent, Trefois, Christophe, Juarez, Edwin F., Bath, Tyler, Borland, David, Mesirov, Jill P., Robasky, Kimberly, Lewis, Nathan E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577426/
https://www.ncbi.nlm.nih.gov/pubmed/34761247
http://dx.doi.org/10.1016/j.crmeth.2021.100040
_version_ 1784596058382270464
author Richelle, Anne
Kellman, Benjamin P.
Wenzel, Alexander T.
Chiang, Austin W.T.
Reagan, Tyler
Gutierrez, Jahir M.
Joshi, Chintan
Li, Shangzhong
Liu, Joanne K.
Masson, Helen
Lee, Jooyong
Li, Zerong
Heirendt, Laurent
Trefois, Christophe
Juarez, Edwin F.
Bath, Tyler
Borland, David
Mesirov, Jill P.
Robasky, Kimberly
Lewis, Nathan E.
author_facet Richelle, Anne
Kellman, Benjamin P.
Wenzel, Alexander T.
Chiang, Austin W.T.
Reagan, Tyler
Gutierrez, Jahir M.
Joshi, Chintan
Li, Shangzhong
Liu, Joanne K.
Masson, Helen
Lee, Jooyong
Li, Zerong
Heirendt, Laurent
Trefois, Christophe
Juarez, Edwin F.
Bath, Tyler
Borland, David
Mesirov, Jill P.
Robasky, Kimberly
Lewis, Nathan E.
author_sort Richelle, Anne
collection PubMed
description Omics experiments are ubiquitous in biological studies, leading to a deluge of data. However, it is still challenging to connect changes in these data to changes in cell functions because of complex interdependencies between genes, proteins, and metabolites. Here, we present a framework allowing researchers to infer how metabolic functions change on the basis of omics data. To enable this, we curated and standardized lists of metabolic tasks that mammalian cells can accomplish. Genome-scale metabolic networks were used to define gene sets associated with each metabolic task. We further developed a framework to overlay omics data on these sets and predict pathway usage for each metabolic task. We demonstrated how this approach can be used to quantify metabolic functions of diverse biological samples from the single cell to whole tissues and organs by using multiple transcriptomic datasets. To facilitate its adoption, we integrated the approach into GenePattern (www.genepattern.org—CellFie).
format Online
Article
Text
id pubmed-8577426
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-85774262021-11-09 Model-based assessment of mammalian cell metabolic functionalities using omics data Richelle, Anne Kellman, Benjamin P. Wenzel, Alexander T. Chiang, Austin W.T. Reagan, Tyler Gutierrez, Jahir M. Joshi, Chintan Li, Shangzhong Liu, Joanne K. Masson, Helen Lee, Jooyong Li, Zerong Heirendt, Laurent Trefois, Christophe Juarez, Edwin F. Bath, Tyler Borland, David Mesirov, Jill P. Robasky, Kimberly Lewis, Nathan E. Cell Rep Methods Article Omics experiments are ubiquitous in biological studies, leading to a deluge of data. However, it is still challenging to connect changes in these data to changes in cell functions because of complex interdependencies between genes, proteins, and metabolites. Here, we present a framework allowing researchers to infer how metabolic functions change on the basis of omics data. To enable this, we curated and standardized lists of metabolic tasks that mammalian cells can accomplish. Genome-scale metabolic networks were used to define gene sets associated with each metabolic task. We further developed a framework to overlay omics data on these sets and predict pathway usage for each metabolic task. We demonstrated how this approach can be used to quantify metabolic functions of diverse biological samples from the single cell to whole tissues and organs by using multiple transcriptomic datasets. To facilitate its adoption, we integrated the approach into GenePattern (www.genepattern.org—CellFie). Elsevier 2021-06-30 /pmc/articles/PMC8577426/ /pubmed/34761247 http://dx.doi.org/10.1016/j.crmeth.2021.100040 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Richelle, Anne
Kellman, Benjamin P.
Wenzel, Alexander T.
Chiang, Austin W.T.
Reagan, Tyler
Gutierrez, Jahir M.
Joshi, Chintan
Li, Shangzhong
Liu, Joanne K.
Masson, Helen
Lee, Jooyong
Li, Zerong
Heirendt, Laurent
Trefois, Christophe
Juarez, Edwin F.
Bath, Tyler
Borland, David
Mesirov, Jill P.
Robasky, Kimberly
Lewis, Nathan E.
Model-based assessment of mammalian cell metabolic functionalities using omics data
title Model-based assessment of mammalian cell metabolic functionalities using omics data
title_full Model-based assessment of mammalian cell metabolic functionalities using omics data
title_fullStr Model-based assessment of mammalian cell metabolic functionalities using omics data
title_full_unstemmed Model-based assessment of mammalian cell metabolic functionalities using omics data
title_short Model-based assessment of mammalian cell metabolic functionalities using omics data
title_sort model-based assessment of mammalian cell metabolic functionalities using omics data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577426/
https://www.ncbi.nlm.nih.gov/pubmed/34761247
http://dx.doi.org/10.1016/j.crmeth.2021.100040
work_keys_str_mv AT richelleanne modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT kellmanbenjaminp modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT wenzelalexandert modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT chiangaustinwt modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT reagantyler modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT gutierrezjahirm modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT joshichintan modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT lishangzhong modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT liujoannek modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT massonhelen modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT leejooyong modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT lizerong modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT heirendtlaurent modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT trefoischristophe modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT juarezedwinf modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT bathtyler modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT borlanddavid modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT mesirovjillp modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT robaskykimberly modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata
AT lewisnathane modelbasedassessmentofmammaliancellmetabolicfunctionalitiesusingomicsdata