Cargando…

Sulfide-quinone oxidoreductase is required for cysteine synthesis and indispensable to mitochondrial health

Mitochondrial dysfunction is related to common age-related disorders, including neurodegenerative diseases, metabolic syndrome, and carcinogenesis. Therefore, maintaining the functionality and integrity of mitochondria is important for human health. Herein, we found that sulfide:quinone oxidoreducta...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xi, Xin, Yuping, Chen, Zhigang, Xia, Yongzhen, Xun, Luying, Liu, Huaiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577491/
https://www.ncbi.nlm.nih.gov/pubmed/34688157
http://dx.doi.org/10.1016/j.redox.2021.102169
Descripción
Sumario:Mitochondrial dysfunction is related to common age-related disorders, including neurodegenerative diseases, metabolic syndrome, and carcinogenesis. Therefore, maintaining the functionality and integrity of mitochondria is important for human health. Herein, we found that sulfide:quinone oxidoreductase (Sqr), which oxidizes hydrogen sulfide to reactive sulfur species (RSS), was indispensable to mitochondria health in the eukaryotic model microorganism Schizosaccharomyces pombe. Sqr knock-out led to morphological changes and functional deficiencies of mitochondria and apoptosis in S. pombe. The Sqr knock-out strain displayed the same phenotypes as the cysteine-synthesis-deficient strain, and cysteine addition complemented the effects caused by Sqr knock-out. In S. pombe, Sqr was the main RSS producer in mitochondria, and RSS instead of H(2)S was used by cysteine synthase to synthesize cysteine. This finding rewrites the cysteine biosynthesis route in S. pombe and may also in other eukaryotes and prokaryotes, and highlights the importance of cysteine and RSS in maintaining mitochondrial health.