Cargando…
Using Wearables and Machine Learning to Enable Personalized Lifestyle Recommendations to Improve Blood Pressure
Background: Blood pressure (BP) is an essential indicator for human health and is known to be greatly influenced by lifestyle factors, like activity and sleep factors. However, the degree of impact of each lifestyle factor on BP is unknown and may vary between individuals. Our goal is to investigate...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577573/ https://www.ncbi.nlm.nih.gov/pubmed/34765324 http://dx.doi.org/10.1109/JTEHM.2021.3098173 |
Ejemplares similares
-
Personalized machine learning of depressed mood using wearables
por: Shah, Rutvik V., et al.
Publicado: (2021) -
LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices
por: Sanchez-Iborra, Ramon
Publicado: (2021) -
Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery
por: Adans-Dester, Catherine, et al.
Publicado: (2020) -
Personalized Lifestyle Medicine: Relevance for Nutrition and Lifestyle Recommendations
por: Minich, Deanna M., et al.
Publicado: (2013) -
Application of ensemble machine learning algorithms on lifestyle factors and wearables for cardiovascular risk prediction
por: Huang, Weiting, et al.
Publicado: (2022)