Cargando…

Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway

BACKGROUND: Microribose nucleic acids (miRNAs) are implicated in the progression of lung adenocarcinoma. MicroRNA-345-5p (miR-345-5p) is a recently identified anti-oncogene in some human cancers, but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown. This stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qiao-Yun, Gui, Shu-Yu, Zhang, Peng, Wang, Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577671/
https://www.ncbi.nlm.nih.gov/pubmed/34748526
http://dx.doi.org/10.1097/CM9.0000000000001804
_version_ 1784596107649613824
author Zhou, Qiao-Yun
Gui, Shu-Yu
Zhang, Peng
Wang, Mei
author_facet Zhou, Qiao-Yun
Gui, Shu-Yu
Zhang, Peng
Wang, Mei
author_sort Zhou, Qiao-Yun
collection PubMed
description BACKGROUND: Microribose nucleic acids (miRNAs) are implicated in the progression of lung adenocarcinoma. MicroRNA-345-5p (miR-345-5p) is a recently identified anti-oncogene in some human cancers, but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown. This study aimed to identify the biological function and underlying mechanism of miR-345-5p in lung adenocarcinoma cells. METHODS: In this study, lung adenocarcinoma tissues and adjacent tissues were collected in the First Affiliated Hospital of Anhui Medical University between April 2016 and February 2017. The expression of miR-345-5p and ras homolog family member A (RhoA) in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines (A549, H1650, PC-9, and H441) was detected by reverse transcription quantitative polymerase chain reaction analysis. Functional assays including colony formation, flow cytometry analysis, wound healing, and transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of lung adenocarcinoma cells. In addition, RNA pulldown and luciferase reporter assays were conducted to evaluate the relationship between miR-345-5p and RhoA. Difference between the two groups was analyzed with Student's t test, while that among multiple groups was analyzed with one-way analysis of variance. RESULTS: MiR-345-5p expression displayed lower level in lung adenocarcinoma tissues (0.241 ± 0.095 vs.1.000 ± 0.233, t = 19.247, P < 0.001) and cell lines (F = 56.992, P < 0.001) than control tissues and cells. Functional experiments demonstrated that upregulation of miR-345-5p inhibited the malignant phenotypes of lung adenocarcinoma cells via suppressing cell proliferation, migration, invasion, and facilitating cell apoptosis. Additionally, RhoA was verified to be the downstream target of miR-345-5p. Expression of RhoA was downregulated by overexpression of miR-345-5p in PC-9 (0.321 ± 0.047 vs. 1.000 ± 0.127, t = 8.536, P < 0.001) and H1650 (0.398 ± 0.054 vs. 1.000 ± 0.156, t = 4.429, P = 0.011) cells. Rescue assays revealed that overexpression of RhoA rescued the suppressive effects of miR-345-5p upregulation on proliferation, migration, and invasion of lung adenocarcinoma cells. Further, miR-345-5p was found to regulate the Rho/Rho-associated protein kinase (ROCK) signaling pathway by downregulation of RhoA in lung adenocarcinoma cells. CONCLUSIONS: MiR-345-5p plays a tumor suppressor role in lung adenocarcinoma cells by downregulating RhoA to inactivate the Rho/ROCK pathway.
format Online
Article
Text
id pubmed-8577671
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-85776712021-11-10 Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway Zhou, Qiao-Yun Gui, Shu-Yu Zhang, Peng Wang, Mei Chin Med J (Engl) Original Articles BACKGROUND: Microribose nucleic acids (miRNAs) are implicated in the progression of lung adenocarcinoma. MicroRNA-345-5p (miR-345-5p) is a recently identified anti-oncogene in some human cancers, but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown. This study aimed to identify the biological function and underlying mechanism of miR-345-5p in lung adenocarcinoma cells. METHODS: In this study, lung adenocarcinoma tissues and adjacent tissues were collected in the First Affiliated Hospital of Anhui Medical University between April 2016 and February 2017. The expression of miR-345-5p and ras homolog family member A (RhoA) in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines (A549, H1650, PC-9, and H441) was detected by reverse transcription quantitative polymerase chain reaction analysis. Functional assays including colony formation, flow cytometry analysis, wound healing, and transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of lung adenocarcinoma cells. In addition, RNA pulldown and luciferase reporter assays were conducted to evaluate the relationship between miR-345-5p and RhoA. Difference between the two groups was analyzed with Student's t test, while that among multiple groups was analyzed with one-way analysis of variance. RESULTS: MiR-345-5p expression displayed lower level in lung adenocarcinoma tissues (0.241 ± 0.095 vs.1.000 ± 0.233, t = 19.247, P < 0.001) and cell lines (F = 56.992, P < 0.001) than control tissues and cells. Functional experiments demonstrated that upregulation of miR-345-5p inhibited the malignant phenotypes of lung adenocarcinoma cells via suppressing cell proliferation, migration, invasion, and facilitating cell apoptosis. Additionally, RhoA was verified to be the downstream target of miR-345-5p. Expression of RhoA was downregulated by overexpression of miR-345-5p in PC-9 (0.321 ± 0.047 vs. 1.000 ± 0.127, t = 8.536, P < 0.001) and H1650 (0.398 ± 0.054 vs. 1.000 ± 0.156, t = 4.429, P = 0.011) cells. Rescue assays revealed that overexpression of RhoA rescued the suppressive effects of miR-345-5p upregulation on proliferation, migration, and invasion of lung adenocarcinoma cells. Further, miR-345-5p was found to regulate the Rho/Rho-associated protein kinase (ROCK) signaling pathway by downregulation of RhoA in lung adenocarcinoma cells. CONCLUSIONS: MiR-345-5p plays a tumor suppressor role in lung adenocarcinoma cells by downregulating RhoA to inactivate the Rho/ROCK pathway. Lippincott Williams & Wilkins 2021-11-05 2021-10-14 /pmc/articles/PMC8577671/ /pubmed/34748526 http://dx.doi.org/10.1097/CM9.0000000000001804 Text en Copyright © 2021 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/)
spellingShingle Original Articles
Zhou, Qiao-Yun
Gui, Shu-Yu
Zhang, Peng
Wang, Mei
Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway
title Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway
title_full Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway
title_fullStr Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway
title_full_unstemmed Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway
title_short Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway
title_sort upregulation of mir-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member a (rhoa) and rho/rho associated protein kinase (rho/rock) pathway
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577671/
https://www.ncbi.nlm.nih.gov/pubmed/34748526
http://dx.doi.org/10.1097/CM9.0000000000001804
work_keys_str_mv AT zhouqiaoyun upregulationofmir3455psuppressescellgrowthoflungadenocarcinomabyregulatingrashomologfamilymemberarhoaandrhorhoassociatedproteinkinaserhorockpathway
AT guishuyu upregulationofmir3455psuppressescellgrowthoflungadenocarcinomabyregulatingrashomologfamilymemberarhoaandrhorhoassociatedproteinkinaserhorockpathway
AT zhangpeng upregulationofmir3455psuppressescellgrowthoflungadenocarcinomabyregulatingrashomologfamilymemberarhoaandrhorhoassociatedproteinkinaserhorockpathway
AT wangmei upregulationofmir3455psuppressescellgrowthoflungadenocarcinomabyregulatingrashomologfamilymemberarhoaandrhorhoassociatedproteinkinaserhorockpathway