Cargando…
A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
INTRODUCTION: Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to dev...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577746/ https://www.ncbi.nlm.nih.gov/pubmed/34752491 http://dx.doi.org/10.1371/journal.pone.0259724 |
_version_ | 1784596122950434816 |
---|---|
author | Amodeo, Ilaria De Nunzio, Giorgio Raffaeli, Genny Borzani, Irene Griggio, Alice Conte, Luana Macchini, Francesco Condò, Valentina Persico, Nicola Fabietti, Isabella Ghirardello, Stefano Pierro, Maria Tafuri, Benedetta Como, Giuseppe Cascio, Donato Colnaghi, Mariarosa Mosca, Fabio Cavallaro, Giacomo |
author_facet | Amodeo, Ilaria De Nunzio, Giorgio Raffaeli, Genny Borzani, Irene Griggio, Alice Conte, Luana Macchini, Francesco Condò, Valentina Persico, Nicola Fabietti, Isabella Ghirardello, Stefano Pierro, Maria Tafuri, Benedetta Como, Giuseppe Cascio, Donato Colnaghi, Mariarosa Mosca, Fabio Cavallaro, Giacomo |
author_sort | Amodeo, Ilaria |
collection | PubMed |
description | INTRODUCTION: Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. METHODS AND ANALYTICS: Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30(th) week of gestation. A retrospective data collection of clinical and radiological variables from newborns’ and mothers’ clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. ETHICS AND DISSEMINATION: This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. REGISTRATION: The study was registered at ClinicalTrials.gov with the identifier NCT04609163. |
format | Online Article Text |
id | pubmed-8577746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85777462021-11-10 A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study Amodeo, Ilaria De Nunzio, Giorgio Raffaeli, Genny Borzani, Irene Griggio, Alice Conte, Luana Macchini, Francesco Condò, Valentina Persico, Nicola Fabietti, Isabella Ghirardello, Stefano Pierro, Maria Tafuri, Benedetta Como, Giuseppe Cascio, Donato Colnaghi, Mariarosa Mosca, Fabio Cavallaro, Giacomo PLoS One Study Protocol INTRODUCTION: Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. METHODS AND ANALYTICS: Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30(th) week of gestation. A retrospective data collection of clinical and radiological variables from newborns’ and mothers’ clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. ETHICS AND DISSEMINATION: This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. REGISTRATION: The study was registered at ClinicalTrials.gov with the identifier NCT04609163. Public Library of Science 2021-11-09 /pmc/articles/PMC8577746/ /pubmed/34752491 http://dx.doi.org/10.1371/journal.pone.0259724 Text en © 2021 Amodeo et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Study Protocol Amodeo, Ilaria De Nunzio, Giorgio Raffaeli, Genny Borzani, Irene Griggio, Alice Conte, Luana Macchini, Francesco Condò, Valentina Persico, Nicola Fabietti, Isabella Ghirardello, Stefano Pierro, Maria Tafuri, Benedetta Como, Giuseppe Cascio, Donato Colnaghi, Mariarosa Mosca, Fabio Cavallaro, Giacomo A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study |
title | A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study |
title_full | A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study |
title_fullStr | A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study |
title_full_unstemmed | A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study |
title_short | A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study |
title_sort | machine and deep learning approach to predict pulmonary hypertension in newborns with congenital diaphragmatic hernia (clannish): protocol for a retrospective study |
topic | Study Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577746/ https://www.ncbi.nlm.nih.gov/pubmed/34752491 http://dx.doi.org/10.1371/journal.pone.0259724 |
work_keys_str_mv | AT amodeoilaria amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT denunziogiorgio amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT raffaeligenny amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT borzaniirene amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT griggioalice amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT conteluana amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT macchinifrancesco amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT condovalentina amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT persiconicola amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT fabiettiisabella amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT ghirardellostefano amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT pierromaria amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT tafuribenedetta amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT comogiuseppe amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT casciodonato amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT colnaghimariarosa amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT moscafabio amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT cavallarogiacomo amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT amodeoilaria machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT denunziogiorgio machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT raffaeligenny machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT borzaniirene machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT griggioalice machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT conteluana machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT macchinifrancesco machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT condovalentina machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT persiconicola machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT fabiettiisabella machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT ghirardellostefano machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT pierromaria machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT tafuribenedetta machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT comogiuseppe machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT casciodonato machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT colnaghimariarosa machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT moscafabio machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy AT cavallarogiacomo machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy |