Cargando…

A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study

INTRODUCTION: Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Amodeo, Ilaria, De Nunzio, Giorgio, Raffaeli, Genny, Borzani, Irene, Griggio, Alice, Conte, Luana, Macchini, Francesco, Condò, Valentina, Persico, Nicola, Fabietti, Isabella, Ghirardello, Stefano, Pierro, Maria, Tafuri, Benedetta, Como, Giuseppe, Cascio, Donato, Colnaghi, Mariarosa, Mosca, Fabio, Cavallaro, Giacomo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577746/
https://www.ncbi.nlm.nih.gov/pubmed/34752491
http://dx.doi.org/10.1371/journal.pone.0259724
_version_ 1784596122950434816
author Amodeo, Ilaria
De Nunzio, Giorgio
Raffaeli, Genny
Borzani, Irene
Griggio, Alice
Conte, Luana
Macchini, Francesco
Condò, Valentina
Persico, Nicola
Fabietti, Isabella
Ghirardello, Stefano
Pierro, Maria
Tafuri, Benedetta
Como, Giuseppe
Cascio, Donato
Colnaghi, Mariarosa
Mosca, Fabio
Cavallaro, Giacomo
author_facet Amodeo, Ilaria
De Nunzio, Giorgio
Raffaeli, Genny
Borzani, Irene
Griggio, Alice
Conte, Luana
Macchini, Francesco
Condò, Valentina
Persico, Nicola
Fabietti, Isabella
Ghirardello, Stefano
Pierro, Maria
Tafuri, Benedetta
Como, Giuseppe
Cascio, Donato
Colnaghi, Mariarosa
Mosca, Fabio
Cavallaro, Giacomo
author_sort Amodeo, Ilaria
collection PubMed
description INTRODUCTION: Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. METHODS AND ANALYTICS: Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30(th) week of gestation. A retrospective data collection of clinical and radiological variables from newborns’ and mothers’ clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. ETHICS AND DISSEMINATION: This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. REGISTRATION: The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
format Online
Article
Text
id pubmed-8577746
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-85777462021-11-10 A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study Amodeo, Ilaria De Nunzio, Giorgio Raffaeli, Genny Borzani, Irene Griggio, Alice Conte, Luana Macchini, Francesco Condò, Valentina Persico, Nicola Fabietti, Isabella Ghirardello, Stefano Pierro, Maria Tafuri, Benedetta Como, Giuseppe Cascio, Donato Colnaghi, Mariarosa Mosca, Fabio Cavallaro, Giacomo PLoS One Study Protocol INTRODUCTION: Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. METHODS AND ANALYTICS: Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30(th) week of gestation. A retrospective data collection of clinical and radiological variables from newborns’ and mothers’ clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. ETHICS AND DISSEMINATION: This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. REGISTRATION: The study was registered at ClinicalTrials.gov with the identifier NCT04609163. Public Library of Science 2021-11-09 /pmc/articles/PMC8577746/ /pubmed/34752491 http://dx.doi.org/10.1371/journal.pone.0259724 Text en © 2021 Amodeo et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Study Protocol
Amodeo, Ilaria
De Nunzio, Giorgio
Raffaeli, Genny
Borzani, Irene
Griggio, Alice
Conte, Luana
Macchini, Francesco
Condò, Valentina
Persico, Nicola
Fabietti, Isabella
Ghirardello, Stefano
Pierro, Maria
Tafuri, Benedetta
Como, Giuseppe
Cascio, Donato
Colnaghi, Mariarosa
Mosca, Fabio
Cavallaro, Giacomo
A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
title A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
title_full A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
title_fullStr A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
title_full_unstemmed A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
title_short A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
title_sort machine and deep learning approach to predict pulmonary hypertension in newborns with congenital diaphragmatic hernia (clannish): protocol for a retrospective study
topic Study Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577746/
https://www.ncbi.nlm.nih.gov/pubmed/34752491
http://dx.doi.org/10.1371/journal.pone.0259724
work_keys_str_mv AT amodeoilaria amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT denunziogiorgio amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT raffaeligenny amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT borzaniirene amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT griggioalice amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT conteluana amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT macchinifrancesco amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT condovalentina amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT persiconicola amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT fabiettiisabella amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT ghirardellostefano amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT pierromaria amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT tafuribenedetta amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT comogiuseppe amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT casciodonato amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT colnaghimariarosa amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT moscafabio amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT cavallarogiacomo amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT amodeoilaria machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT denunziogiorgio machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT raffaeligenny machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT borzaniirene machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT griggioalice machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT conteluana machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT macchinifrancesco machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT condovalentina machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT persiconicola machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT fabiettiisabella machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT ghirardellostefano machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT pierromaria machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT tafuribenedetta machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT comogiuseppe machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT casciodonato machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT colnaghimariarosa machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT moscafabio machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT cavallarogiacomo machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy