Cargando…
Semiparametric maximum likelihood probability density estimation
A comprehensive methodology for semiparametric probability density estimation is introduced and explored. The probability density is modelled by sequences of mostly regular or steep exponential families generated by flexible sets of basis functions, possibly including boundary terms. Parameters are...
Autor principal: | Kwasniok, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577774/ https://www.ncbi.nlm.nih.gov/pubmed/34752460 http://dx.doi.org/10.1371/journal.pone.0259111 |
Ejemplares similares
-
Maximum likelihood estimation for semiparametric transformation models with
interval-censored data
por: Zeng, Donglin, et al.
Publicado: (2016) -
Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data
por: Zeng, Donglin, et al.
Publicado: (2017) -
Maximum-likelihood density modification
por: Terwilliger, Thomas C.
Publicado: (2000) -
Statistical Generalized Derivative Applied to the Profile Likelihood Estimation in a Mixture of Semiparametric Models
por: Hirose, Yuichi, et al.
Publicado: (2020) -
Maximum Penalized Likelihood Estimation
por: LaRiccia, Vincent N, et al.
Publicado: (2009)