Cargando…

YQHX Alleviates H/R-Induced Cardiomyocyte Apoptosis by Downregulating miR-1

Yiqi Huoxue granule (YQHX) inhibits cardiomyocyte apoptosis in myocardial ischemia-reperfusion injury (MIRI); however, the underlying mechanism is unknown. In this study, hypoxia-reoxygenation (H/R) models were established using rat myocardial primary cells and H9c2 cells, lactate dehydrogenase (LDH...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Luandie, Fan, Yaqi, Fu, Lin, Guo, Mengjiao, Cao, Panxia, Peng, Chaojie, Wu, Linke, Han, Lihua, Wu, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577916/
https://www.ncbi.nlm.nih.gov/pubmed/34765002
http://dx.doi.org/10.1155/2021/4852406
Descripción
Sumario:Yiqi Huoxue granule (YQHX) inhibits cardiomyocyte apoptosis in myocardial ischemia-reperfusion injury (MIRI); however, the underlying mechanism is unknown. In this study, hypoxia-reoxygenation (H/R) models were established using rat myocardial primary cells and H9c2 cells, lactate dehydrogenase (LDH), and creatine kinase (CK) levels and cardiomyocyte apoptosis were determined. LDH release, CK activity, caspase-3 activation, mRNA and protein ratio of Bax/Bcl-2, and miR-1 expression were significantly higher (p < 0.01) in the H/R model of rat myocardial primary cells and H9c2 cells compared with the control group and was inhibited by YQHX treatment (p < 0.01 or p < 0.05). We also found that miR-1 overexpression could enhance apoptosis in cardiomyocytes, whereas apoptosis could be reduced by YQHX treatment (p < 0.01). In conclusion, YQHX alleviates H/R-induced cardiomyocyte apoptosis by inhibiting miR-1 expression, suggesting the potential of YQHX in preventing MIRI.