Cargando…
TA-BiLSTM: An Interpretable Topic-Aware Model for Misleading Information Detection in Mobile Social Networks
As essential information acquisition tools in our lives, mobile social networks have brought us great convenience for communication. However, misleading information such as spam emails, clickbait links, and false health information appears everywhere in mobile social networks. Prior studies have ado...
Autores principales: | Chang, Shuyu, Wang, Rui, Huang, Haiping, Luo, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577966/ http://dx.doi.org/10.1007/s11036-021-01847-w |
Ejemplares similares
-
Human Activity Recognition Based on Residual Network and BiLSTM
por: Li, Yong, et al.
Publicado: (2022) -
Digitization of Handwritten Chess Scoresheets with a BiLSTM Network
por: Majid, Nishatul, et al.
Publicado: (2022) -
Network Intrusion Detection Method Based on FCWGAN and BiLSTM
por: Ma, Zexuan, et al.
Publicado: (2022) -
Predicting Geolocation of Tweets: Using Combination of CNN and BiLSTM
por: Mahajan, Rhea, et al.
Publicado: (2021) -
ECG signal classification based on deep CNN and BiLSTM
por: Cheng, Jinyong, et al.
Publicado: (2021)