Cargando…
DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
Recent global developments underscore the prominent role big data have in modern medical science. But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. However, synthetic data generated to represent real data carrying similar information and distribut...
Autores principales: | Thambawita, Vajira, Isaksen, Jonas L., Hicks, Steven A., Ghouse, Jonas, Ahlberg, Gustav, Linneberg, Allan, Grarup, Niels, Ellervik, Christina, Olesen, Morten Salling, Hansen, Torben, Graff, Claus, Holstein-Rathlou, Niels-Henrik, Strümke, Inga, Hammer, Hugo L., Maleckar, Mary M., Halvorsen, Pål, Riegler, Michael A., Kanters, Jørgen K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578227/ https://www.ncbi.nlm.nih.gov/pubmed/34753975 http://dx.doi.org/10.1038/s41598-021-01295-2 |
Ejemplares similares
-
Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
por: Hicks, Steven A., et al.
Publicado: (2021) -
Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
por: Thambawita, Vajira, et al.
Publicado: (2021) -
TweepFake: About detecting deepfake tweets
por: Fagni, Tiziano, et al.
Publicado: (2021) -
Deepfakes, Fake Barns, and Knowledge from Videos
por: Matthews, Taylor
Publicado: (2023) -
On evaluation metrics for medical applications of artificial intelligence
por: Hicks, Steven A., et al.
Publicado: (2022)