Cargando…
A versatile computational algorithm for time-series data analysis and machine-learning models
Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simpl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578326/ https://www.ncbi.nlm.nih.gov/pubmed/34753948 http://dx.doi.org/10.1038/s41531-021-00240-4 |
_version_ | 1784596233529065472 |
---|---|
author | Chomiak, Taylor Rasiah, Neilen P. Molina, Leonardo A. Hu, Bin Bains, Jaideep S. Füzesi, Tamás |
author_facet | Chomiak, Taylor Rasiah, Neilen P. Molina, Leonardo A. Hu, Bin Bains, Jaideep S. Füzesi, Tamás |
author_sort | Chomiak, Taylor |
collection | PubMed |
description | Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test. |
format | Online Article Text |
id | pubmed-8578326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85783262021-11-15 A versatile computational algorithm for time-series data analysis and machine-learning models Chomiak, Taylor Rasiah, Neilen P. Molina, Leonardo A. Hu, Bin Bains, Jaideep S. Füzesi, Tamás NPJ Parkinsons Dis Brief Communication Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test. Nature Publishing Group UK 2021-11-09 /pmc/articles/PMC8578326/ /pubmed/34753948 http://dx.doi.org/10.1038/s41531-021-00240-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Brief Communication Chomiak, Taylor Rasiah, Neilen P. Molina, Leonardo A. Hu, Bin Bains, Jaideep S. Füzesi, Tamás A versatile computational algorithm for time-series data analysis and machine-learning models |
title | A versatile computational algorithm for time-series data analysis and machine-learning models |
title_full | A versatile computational algorithm for time-series data analysis and machine-learning models |
title_fullStr | A versatile computational algorithm for time-series data analysis and machine-learning models |
title_full_unstemmed | A versatile computational algorithm for time-series data analysis and machine-learning models |
title_short | A versatile computational algorithm for time-series data analysis and machine-learning models |
title_sort | versatile computational algorithm for time-series data analysis and machine-learning models |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578326/ https://www.ncbi.nlm.nih.gov/pubmed/34753948 http://dx.doi.org/10.1038/s41531-021-00240-4 |
work_keys_str_mv | AT chomiaktaylor aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT rasiahneilenp aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT molinaleonardoa aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT hubin aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT bainsjaideeps aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT fuzesitamas aversatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT chomiaktaylor versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT rasiahneilenp versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT molinaleonardoa versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT hubin versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT bainsjaideeps versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels AT fuzesitamas versatilecomputationalalgorithmfortimeseriesdataanalysisandmachinelearningmodels |