Cargando…
Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning
The ability to forecast seizures minutes to hours in advance of an event has been verified using invasive EEG devices, but has not been previously demonstrated using noninvasive wearable devices over long durations in an ambulatory setting. In this study we developed a seizure forecasting system wit...
Autores principales: | Nasseri, Mona, Pal Attia, Tal, Joseph, Boney, Gregg, Nicholas M., Nurse, Ewan S., Viana, Pedro F., Worrell, Gregory, Dümpelmann, Matthias, Richardson, Mark P., Freestone, Dean R., Brinkmann, Benjamin H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578354/ https://www.ncbi.nlm.nih.gov/pubmed/34754043 http://dx.doi.org/10.1038/s41598-021-01449-2 |
Ejemplares similares
-
Seizure Diaries and Forecasting With Wearables: Epilepsy Monitoring Outside the Clinic
por: Brinkmann, Benjamin H., et al.
Publicado: (2021) -
Forecasting Seizure Likelihood With Wearable Technology
por: Stirling, Rachel E., et al.
Publicado: (2021) -
Perceived seizure risk in epilepsy – Chronic electronic surveys with and without concurrent EEG
por: Cui, Jie, et al.
Publicado: (2023) -
Forecasting seizure likelihood from cycles of self-reported events and heart rate: a prospective pilot study
por: Xiong, Wenjuan, et al.
Publicado: (2023) -
230 days of ultra long‐term subcutaneous EEG: seizure cycle analysis and comparison to patient diary
por: Viana, Pedro F., et al.
Publicado: (2020)