Cargando…

VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases

Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently need...

Descripción completa

Detalles Bibliográficos
Autores principales: Quinn, James P, Kandigian, Savannah E, Trombetta, Bianca A, Arnold, Steven E, Carlyle, Becky C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578498/
https://www.ncbi.nlm.nih.gov/pubmed/34778762
http://dx.doi.org/10.1093/braincomms/fcab261
_version_ 1784596249456934912
author Quinn, James P
Kandigian, Savannah E
Trombetta, Bianca A
Arnold, Steven E
Carlyle, Becky C
author_facet Quinn, James P
Kandigian, Savannah E
Trombetta, Bianca A
Arnold, Steven E
Carlyle, Becky C
author_sort Quinn, James P
collection PubMed
description Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer’s disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer’s disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer’s disease compared to controls, and its levels correlate with disease severity and Alzheimer’s disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF(1–615) undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF(554–615)) and TLQP-21 (VGF(554–574)) have differential effects on Alzheimer’s disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-β plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer’s disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington’s disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted.
format Online
Article
Text
id pubmed-8578498
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-85784982021-11-12 VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases Quinn, James P Kandigian, Savannah E Trombetta, Bianca A Arnold, Steven E Carlyle, Becky C Brain Commun Review Article Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer’s disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer’s disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer’s disease compared to controls, and its levels correlate with disease severity and Alzheimer’s disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF(1–615) undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF(554–615)) and TLQP-21 (VGF(554–574)) have differential effects on Alzheimer’s disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-β plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer’s disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington’s disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted. Oxford University Press 2021-10-27 /pmc/articles/PMC8578498/ /pubmed/34778762 http://dx.doi.org/10.1093/braincomms/fcab261 Text en © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Review Article
Quinn, James P
Kandigian, Savannah E
Trombetta, Bianca A
Arnold, Steven E
Carlyle, Becky C
VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases
title VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases
title_full VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases
title_fullStr VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases
title_full_unstemmed VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases
title_short VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases
title_sort vgf as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578498/
https://www.ncbi.nlm.nih.gov/pubmed/34778762
http://dx.doi.org/10.1093/braincomms/fcab261
work_keys_str_mv AT quinnjamesp vgfasabiomarkerandtherapeutictargetinneurodegenerativeandpsychiatricdiseases
AT kandigiansavannahe vgfasabiomarkerandtherapeutictargetinneurodegenerativeandpsychiatricdiseases
AT trombettabiancaa vgfasabiomarkerandtherapeutictargetinneurodegenerativeandpsychiatricdiseases
AT arnoldstevene vgfasabiomarkerandtherapeutictargetinneurodegenerativeandpsychiatricdiseases
AT carlylebeckyc vgfasabiomarkerandtherapeutictargetinneurodegenerativeandpsychiatricdiseases