Cargando…
Laughlin anyon complexes with Bose properties
Two-dimensional electron systems in a quantizing magnetic field are regarded as of exceptional interest, considering the possible role of anyons—quasiparticles with non-boson and non-fermion statistics—in applied physics. To this day, essentially none but the fractional states of the quantum Hall ef...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578557/ https://www.ncbi.nlm.nih.gov/pubmed/34753935 http://dx.doi.org/10.1038/s41467-021-26873-w |
Sumario: | Two-dimensional electron systems in a quantizing magnetic field are regarded as of exceptional interest, considering the possible role of anyons—quasiparticles with non-boson and non-fermion statistics—in applied physics. To this day, essentially none but the fractional states of the quantum Hall effect (FQHE) have been experimentally realized as a system with anyonic statistics. In determining the thermodynamic properties of anyon matter, it is crucial to gain insight into the physics of its neutral excitations. We form a macroscopic quasi-equilibrium ensemble of neutral excitations - spin one anyon complexes in the Laughlin state ν = 1/3, experimentally, where ν is the electron filling factor. The ensemble is found to have such a long lifetime that it can be considered the new state of anyon matter. The properties of this state are investigated by optical techniques to reveal its Bose properties. |
---|