Cargando…
Co-evolution based machine-learning for predicting functional interactions between human genes
Over the next decade, more than a million eukaryotic species are expected to be fully sequenced. This has the potential to improve our understanding of genotype and phenotype crosstalk, gene function and interactions, and answer evolutionary questions. Here, we develop a machine-learning approach fo...
Autores principales: | Stupp, Doron, Sharon, Elad, Bloch, Idit, Zitnik, Marinka, Zuk, Or, Tabach, Yuval |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578642/ https://www.ncbi.nlm.nih.gov/pubmed/34753957 http://dx.doi.org/10.1038/s41467-021-26792-w |
Ejemplares similares
-
CladeOScope: functional interactions through the prism of clade-wise co-evolution
por: Tsaban, Tomer, et al.
Publicado: (2021) -
Machine-learning of complex evolutionary signals improves classification of SNVs
por: Labes, Sapir, et al.
Publicado: (2022) -
DeepPurpose: a deep learning library for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020) -
Gene network inference by probabilistic scoring of relationships from a factorized model of interactions
por: Žitnik, Marinka, et al.
Publicado: (2014) -
Predicting multicellular function through multi-layer tissue networks
por: Zitnik, Marinka, et al.
Publicado: (2017)