Cargando…

Redundancy Removal Adversarial Active Learning Based on Norm Online Uncertainty Indicator

Active learning aims to select the most valuable unlabelled samples for annotation. In this paper, we propose a redundancy removal adversarial active learning (RRAAL) method based on norm online uncertainty indicator, which selects samples based on their distribution, uncertainty, and redundancy. RR...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jifeng, Pang, Zhiqi, Sun, Wenbo, Li, Shi, Chen, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578688/
https://www.ncbi.nlm.nih.gov/pubmed/34777493
http://dx.doi.org/10.1155/2021/4752568
Descripción
Sumario:Active learning aims to select the most valuable unlabelled samples for annotation. In this paper, we propose a redundancy removal adversarial active learning (RRAAL) method based on norm online uncertainty indicator, which selects samples based on their distribution, uncertainty, and redundancy. RRAAL includes a representation generator, state discriminator, and redundancy removal module (RRM). The purpose of the representation generator is to learn the feature representation of a sample, and the state discriminator predicts the state of the feature vector after concatenation. We added a sample discriminator to the representation generator to improve the representation learning ability of the generator and designed a norm online uncertainty indicator (Norm-OUI) to provide a more accurate uncertainty score for the state discriminator. In addition, we designed an RRM based on a greedy algorithm to reduce the number of redundant samples in the labelled pool. The experimental results on four datasets show that the state discriminator, Norm-OUI, and RRM can improve the performance of RRAAL, and RRAAL outperforms the previous state-of-the-art active learning methods.