Cargando…

Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius

Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent compon...

Descripción completa

Detalles Bibliográficos
Autores principales: Chauhan, Siddharth M., Poudel, Saugat, Rychel, Kevin, Lamoureux, Cameron, Yoo, Reo, Al Bulushi, Tahani, Yuan, Yuan, Palsson, Bernhard O., Sastry, Anand V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578740/
https://www.ncbi.nlm.nih.gov/pubmed/34777307
http://dx.doi.org/10.3389/fmicb.2021.753521
_version_ 1784596298334208000
author Chauhan, Siddharth M.
Poudel, Saugat
Rychel, Kevin
Lamoureux, Cameron
Yoo, Reo
Al Bulushi, Tahani
Yuan, Yuan
Palsson, Bernhard O.
Sastry, Anand V.
author_facet Chauhan, Siddharth M.
Poudel, Saugat
Rychel, Kevin
Lamoureux, Cameron
Yoo, Reo
Al Bulushi, Tahani
Yuan, Yuan
Palsson, Bernhard O.
Sastry, Anand V.
author_sort Chauhan, Siddharth M.
collection PubMed
description Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent component analysis, an unsupervised machine learning approach, to 95 high-quality Sulfolobus acidocaldarius RNA-seq datasets and extract 45 independently modulated gene sets, or iModulons. Together, these iModulons contain 755 genes (32% of the genes identified on the genome) and explain over 70% of the variance in the expression compendium. We show that five modules represent the effects of known transcriptional regulators, and hypothesize that most of the remaining modules represent the effects of uncharacterized regulators. Further analysis of these gene sets results in: (1) the prediction of a DNA export system composed of five uncharacterized genes, (2) expansion of the LysM regulon, and (3) evidence for an as-yet-undiscovered global regulon. Our approach allows for a mechanistic, systems-level elucidation of an extremophile’s responses to biological perturbations, which could inform research on gene-regulator interactions and facilitate regulator discovery in S. acidocaldarius. We also provide the first global TRN for S. acidocaldarius. Collectively, these results provide a roadmap toward regulatory network discovery in archaea.
format Online
Article
Text
id pubmed-8578740
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-85787402021-11-11 Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius Chauhan, Siddharth M. Poudel, Saugat Rychel, Kevin Lamoureux, Cameron Yoo, Reo Al Bulushi, Tahani Yuan, Yuan Palsson, Bernhard O. Sastry, Anand V. Front Microbiol Microbiology Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent component analysis, an unsupervised machine learning approach, to 95 high-quality Sulfolobus acidocaldarius RNA-seq datasets and extract 45 independently modulated gene sets, or iModulons. Together, these iModulons contain 755 genes (32% of the genes identified on the genome) and explain over 70% of the variance in the expression compendium. We show that five modules represent the effects of known transcriptional regulators, and hypothesize that most of the remaining modules represent the effects of uncharacterized regulators. Further analysis of these gene sets results in: (1) the prediction of a DNA export system composed of five uncharacterized genes, (2) expansion of the LysM regulon, and (3) evidence for an as-yet-undiscovered global regulon. Our approach allows for a mechanistic, systems-level elucidation of an extremophile’s responses to biological perturbations, which could inform research on gene-regulator interactions and facilitate regulator discovery in S. acidocaldarius. We also provide the first global TRN for S. acidocaldarius. Collectively, these results provide a roadmap toward regulatory network discovery in archaea. Frontiers Media S.A. 2021-10-27 /pmc/articles/PMC8578740/ /pubmed/34777307 http://dx.doi.org/10.3389/fmicb.2021.753521 Text en Copyright © 2021 Chauhan, Poudel, Rychel, Lamoureux, Yoo, Al Bulushi, Yuan, Palsson and Sastry. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Chauhan, Siddharth M.
Poudel, Saugat
Rychel, Kevin
Lamoureux, Cameron
Yoo, Reo
Al Bulushi, Tahani
Yuan, Yuan
Palsson, Bernhard O.
Sastry, Anand V.
Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
title Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
title_full Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
title_fullStr Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
title_full_unstemmed Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
title_short Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
title_sort machine learning uncovers a data-driven transcriptional regulatory network for the crenarchaeal thermoacidophile sulfolobus acidocaldarius
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578740/
https://www.ncbi.nlm.nih.gov/pubmed/34777307
http://dx.doi.org/10.3389/fmicb.2021.753521
work_keys_str_mv AT chauhansiddharthm machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius
AT poudelsaugat machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius
AT rychelkevin machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius
AT lamoureuxcameron machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius
AT yooreo machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius
AT albulushitahani machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius
AT yuanyuan machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius
AT palssonbernhardo machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius
AT sastryanandv machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius