Cargando…
Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent compon...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578740/ https://www.ncbi.nlm.nih.gov/pubmed/34777307 http://dx.doi.org/10.3389/fmicb.2021.753521 |
_version_ | 1784596298334208000 |
---|---|
author | Chauhan, Siddharth M. Poudel, Saugat Rychel, Kevin Lamoureux, Cameron Yoo, Reo Al Bulushi, Tahani Yuan, Yuan Palsson, Bernhard O. Sastry, Anand V. |
author_facet | Chauhan, Siddharth M. Poudel, Saugat Rychel, Kevin Lamoureux, Cameron Yoo, Reo Al Bulushi, Tahani Yuan, Yuan Palsson, Bernhard O. Sastry, Anand V. |
author_sort | Chauhan, Siddharth M. |
collection | PubMed |
description | Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent component analysis, an unsupervised machine learning approach, to 95 high-quality Sulfolobus acidocaldarius RNA-seq datasets and extract 45 independently modulated gene sets, or iModulons. Together, these iModulons contain 755 genes (32% of the genes identified on the genome) and explain over 70% of the variance in the expression compendium. We show that five modules represent the effects of known transcriptional regulators, and hypothesize that most of the remaining modules represent the effects of uncharacterized regulators. Further analysis of these gene sets results in: (1) the prediction of a DNA export system composed of five uncharacterized genes, (2) expansion of the LysM regulon, and (3) evidence for an as-yet-undiscovered global regulon. Our approach allows for a mechanistic, systems-level elucidation of an extremophile’s responses to biological perturbations, which could inform research on gene-regulator interactions and facilitate regulator discovery in S. acidocaldarius. We also provide the first global TRN for S. acidocaldarius. Collectively, these results provide a roadmap toward regulatory network discovery in archaea. |
format | Online Article Text |
id | pubmed-8578740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85787402021-11-11 Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius Chauhan, Siddharth M. Poudel, Saugat Rychel, Kevin Lamoureux, Cameron Yoo, Reo Al Bulushi, Tahani Yuan, Yuan Palsson, Bernhard O. Sastry, Anand V. Front Microbiol Microbiology Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent component analysis, an unsupervised machine learning approach, to 95 high-quality Sulfolobus acidocaldarius RNA-seq datasets and extract 45 independently modulated gene sets, or iModulons. Together, these iModulons contain 755 genes (32% of the genes identified on the genome) and explain over 70% of the variance in the expression compendium. We show that five modules represent the effects of known transcriptional regulators, and hypothesize that most of the remaining modules represent the effects of uncharacterized regulators. Further analysis of these gene sets results in: (1) the prediction of a DNA export system composed of five uncharacterized genes, (2) expansion of the LysM regulon, and (3) evidence for an as-yet-undiscovered global regulon. Our approach allows for a mechanistic, systems-level elucidation of an extremophile’s responses to biological perturbations, which could inform research on gene-regulator interactions and facilitate regulator discovery in S. acidocaldarius. We also provide the first global TRN for S. acidocaldarius. Collectively, these results provide a roadmap toward regulatory network discovery in archaea. Frontiers Media S.A. 2021-10-27 /pmc/articles/PMC8578740/ /pubmed/34777307 http://dx.doi.org/10.3389/fmicb.2021.753521 Text en Copyright © 2021 Chauhan, Poudel, Rychel, Lamoureux, Yoo, Al Bulushi, Yuan, Palsson and Sastry. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Chauhan, Siddharth M. Poudel, Saugat Rychel, Kevin Lamoureux, Cameron Yoo, Reo Al Bulushi, Tahani Yuan, Yuan Palsson, Bernhard O. Sastry, Anand V. Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius |
title | Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius |
title_full | Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius |
title_fullStr | Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius |
title_full_unstemmed | Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius |
title_short | Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius |
title_sort | machine learning uncovers a data-driven transcriptional regulatory network for the crenarchaeal thermoacidophile sulfolobus acidocaldarius |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578740/ https://www.ncbi.nlm.nih.gov/pubmed/34777307 http://dx.doi.org/10.3389/fmicb.2021.753521 |
work_keys_str_mv | AT chauhansiddharthm machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius AT poudelsaugat machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius AT rychelkevin machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius AT lamoureuxcameron machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius AT yooreo machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius AT albulushitahani machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius AT yuanyuan machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius AT palssonbernhardo machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius AT sastryanandv machinelearninguncoversadatadriventranscriptionalregulatorynetworkforthecrenarchaealthermoacidophilesulfolobusacidocaldarius |