Cargando…
A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia
Objective: Preeclampsia affects 2–8% of women and doubles the risk of cardiovascular disease in women after preeclampsia. This study aimed to develop a model based on machine learning to predict postpartum cardiovascular risk in preeclamptic women. Methods: Collecting demographic characteristics and...
Autores principales: | Wang, Guan, Zhang, Yanbo, Li, Sijin, Zhang, Jun, Jiang, Dongkui, Li, Xiuzhen, Li, Yulin, Du, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578855/ https://www.ncbi.nlm.nih.gov/pubmed/34778400 http://dx.doi.org/10.3389/fcvm.2021.736491 |
Ejemplares similares
-
Comparison of machine learning and logistic regression as predictive models for adverse maternal and neonatal outcomes of preeclampsia: A retrospective study
por: Zheng, Dongying, et al.
Publicado: (2022) -
Machine learning models for predicting the risk factor of carotid plaque in cardiovascular disease
por: Bin, Chengling, et al.
Publicado: (2023) -
Prediction of Delivery Within 7 Days After Diagnosis of Early Onset Preeclampsia Using Machine-Learning Models
por: Villalaín, Cecilia, et al.
Publicado: (2022) -
Machine Learning-Based Personalized Risk Prediction Model for Mortality of Patients Undergoing Mitral Valve Surgery: The PRIME Score
por: Zhou, Ning, et al.
Publicado: (2022) -
A Cardiovascular Disease Prediction Model Based on Routine Physical Examination Indicators Using Machine Learning Methods: A Cohort Study
por: Qian, Xin, et al.
Publicado: (2022)