Cargando…
Delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice
Influenza remains a major cause of death and disability with limited treatment options. Studies of acute lung injury have identified angiopoietin‐2 (Ang‐2) as a key prognostic marker and a potential mediator of Acute respiratory distress syndrome. However, the role of Ang‐2 in viral pneumonia remain...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578883/ https://www.ncbi.nlm.nih.gov/pubmed/34755490 http://dx.doi.org/10.14814/phy2.15081 |
_version_ | 1784596329585967104 |
---|---|
author | Gotts, Jeffrey E. Maishan, Mazharul Chun, Lauren Fang, Xiaohui Han, Chun‐Ya Chiueh, Venice Khakoo, Aarif Y. Lee, TaeWeon Stolina, Marina Matthay, Michael A. |
author_facet | Gotts, Jeffrey E. Maishan, Mazharul Chun, Lauren Fang, Xiaohui Han, Chun‐Ya Chiueh, Venice Khakoo, Aarif Y. Lee, TaeWeon Stolina, Marina Matthay, Michael A. |
author_sort | Gotts, Jeffrey E. |
collection | PubMed |
description | Influenza remains a major cause of death and disability with limited treatment options. Studies of acute lung injury have identified angiopoietin‐2 (Ang‐2) as a key prognostic marker and a potential mediator of Acute respiratory distress syndrome. However, the role of Ang‐2 in viral pneumonia remains poorly defined. This study characterized the time course of lung Ang‐2 expression in severe influenza pneumonia and tested the therapeutic potential of Ang‐2 inhibition. We inoculated adult mice with influenza A (PR8 strain) and measured angiopoietin‐1 (Ang‐1), Ang‐2, and Tie2 expressions during the evolution of inflammatory lung injury over the first 7 days post‐infection (dpi). We tested a peptide‐antibody inhibitor of Ang‐2, L1‐7, administered at 2, 4, and 6 dpi and measured arterial oxygen saturation, survival, pulmonary edema, inflammatory cytokines, and viral load. Finally, we infected primary human alveolar type II epithelial (AT2) cells grown in air‐liquid interface culture with influenza and measured Ang‐2 RNA expression. Influenza caused severe lung injury between 5 and 7 dpi in association with increased Ang‐2 lung RNA and a dramatic increase in Ang‐2 protein in bronchoalveolar lavage. Inhibition of Ang‐2 improved oxygenation and survival and reduced pulmonary edema and alveolar‐capillary barrier permeability to protein without major effects on inflammation or viral load. Finally, influenza increased the expression of Ang‐2 RNA in human AT2 cells. The increased Ang‐2 levels in the airspaces during severe influenza pneumonia and the improvement in clinically relevant outcomes after Ang‐2 antagonism suggest that the Ang‐1/Ang‐2 Tie‐2 signaling axis is a promising therapeutic target in influenza and potentially other causes of viral pneumonia. |
format | Online Article Text |
id | pubmed-8578883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85788832021-11-15 Delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice Gotts, Jeffrey E. Maishan, Mazharul Chun, Lauren Fang, Xiaohui Han, Chun‐Ya Chiueh, Venice Khakoo, Aarif Y. Lee, TaeWeon Stolina, Marina Matthay, Michael A. Physiol Rep Original Articles Influenza remains a major cause of death and disability with limited treatment options. Studies of acute lung injury have identified angiopoietin‐2 (Ang‐2) as a key prognostic marker and a potential mediator of Acute respiratory distress syndrome. However, the role of Ang‐2 in viral pneumonia remains poorly defined. This study characterized the time course of lung Ang‐2 expression in severe influenza pneumonia and tested the therapeutic potential of Ang‐2 inhibition. We inoculated adult mice with influenza A (PR8 strain) and measured angiopoietin‐1 (Ang‐1), Ang‐2, and Tie2 expressions during the evolution of inflammatory lung injury over the first 7 days post‐infection (dpi). We tested a peptide‐antibody inhibitor of Ang‐2, L1‐7, administered at 2, 4, and 6 dpi and measured arterial oxygen saturation, survival, pulmonary edema, inflammatory cytokines, and viral load. Finally, we infected primary human alveolar type II epithelial (AT2) cells grown in air‐liquid interface culture with influenza and measured Ang‐2 RNA expression. Influenza caused severe lung injury between 5 and 7 dpi in association with increased Ang‐2 lung RNA and a dramatic increase in Ang‐2 protein in bronchoalveolar lavage. Inhibition of Ang‐2 improved oxygenation and survival and reduced pulmonary edema and alveolar‐capillary barrier permeability to protein without major effects on inflammation or viral load. Finally, influenza increased the expression of Ang‐2 RNA in human AT2 cells. The increased Ang‐2 levels in the airspaces during severe influenza pneumonia and the improvement in clinically relevant outcomes after Ang‐2 antagonism suggest that the Ang‐1/Ang‐2 Tie‐2 signaling axis is a promising therapeutic target in influenza and potentially other causes of viral pneumonia. John Wiley and Sons Inc. 2021-11-09 /pmc/articles/PMC8578883/ /pubmed/34755490 http://dx.doi.org/10.14814/phy2.15081 Text en © 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Gotts, Jeffrey E. Maishan, Mazharul Chun, Lauren Fang, Xiaohui Han, Chun‐Ya Chiueh, Venice Khakoo, Aarif Y. Lee, TaeWeon Stolina, Marina Matthay, Michael A. Delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice |
title | Delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice |
title_full | Delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice |
title_fullStr | Delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice |
title_full_unstemmed | Delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice |
title_short | Delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice |
title_sort | delayed angiopoietin‐2 blockade reduces influenza‐induced lung injury and improves survival in mice |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578883/ https://www.ncbi.nlm.nih.gov/pubmed/34755490 http://dx.doi.org/10.14814/phy2.15081 |
work_keys_str_mv | AT gottsjeffreye delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT maishanmazharul delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT chunlauren delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT fangxiaohui delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT hanchunya delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT chiuehvenice delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT khakooaarify delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT leetaeweon delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT stolinamarina delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice AT matthaymichaela delayedangiopoietin2blockadereducesinfluenzainducedlunginjuryandimprovessurvivalinmice |