Cargando…
Estimation of Left Ventricular End-Systolic Elastance From Brachial Pressure Waveform via Deep Learning
Determination of left ventricular (LV) end-systolic elastance (E( es )) is of utmost importance for assessing the cardiac systolic function and hemodynamical state in humans. Yet, the clinical use of E( es ) is not established due to the invasive nature and high costs of the existing measuring techn...
Autores principales: | Bikia, Vasiliki, Lazaroska, Marija, Scherrer Ma, Deborah, Zhao, Méline, Rovas, Georgios, Pagoulatou, Stamatia, Stergiopulos, Nikolaos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578926/ https://www.ncbi.nlm.nih.gov/pubmed/34778228 http://dx.doi.org/10.3389/fbioe.2021.754003 |
Ejemplares similares
-
Determination of Aortic Characteristic Impedance and Total Arterial Compliance From Regional Pulse Wave Velocities Using Machine Learning: An in-silico Study
por: Bikia, Vasiliki, et al.
Publicado: (2021) -
AI-Based Estimation of End-Systolic Elastance From Arm-Pressure and Systolic Time Intervals
por: Bikia, Vasiliki, et al.
Publicado: (2021) -
Cardiac output estimated from an uncalibrated radial blood pressure waveform: validation in an in-silico-generated population
por: Bikia, Vasiliki, et al.
Publicado: (2023) -
Design and computational optimization of compliance-matching aortic grafts
por: Rovas, Georgios, et al.
Publicado: (2023) -
The effect of left ventricular contractility on arterial hemodynamics: A model-based investigation
por: Pagoulatou, Stamatia, et al.
Publicado: (2021)